An Early Warning System for Tail Financial Risks

Gianni De Nicolo' Johns Hopkins University Carey Business School

2023 RiskLab/BoF/ESRB

Motivation

- The financial crisis of 2007-2009 prompted significant efforts at central banks and bank regulatory agencies in designing early warning systems (EWS) in the financial sector.
- The current implementation of key Basel bank regulations is increasingly relying on banking system-wide tail risk forecasts as embedded in stress testing exercises.
- The EWS in this paper builds on the literature taking a risk management approach to the modeling and measurement of tail financial risks
- Methodological approach: rather than conducting a horse race among competing
 models looking for a winner, the proposed EWS exploits the potential of several
 competing (mis-specified) forecasting models to improve forecasting performance.

The Early Warning System (EWS) in a nutshell

- The EWS is based on real-time multi-period forecast combinations of Value-at-Risk (VaR) and Expected Shortfalls (ES) of portfolio returns of non-financial firms and banks.
- Forecast combinations include baseline (VaR,ES) forecasts conditional on a domestic risk factor, as well as (sVaR,sES) forecasts conditional on CoVaRs of the risk factor
- Focus on surveillance in real-time.

- Implemented using monthly data of the G-7 economies for the period 1975:01-2018:12 (current paper),
- On going revision: 1975:01-2023:04

Three novel features

- Weight (model) selection (NEW relative to current posted paper)
 - ► At each forecasting date, model forecasts are included in the combination if they pass an out-of-sample backtest in a previous evaluation period.
 - ► The weight of selected model forecasts solve a minimum variance portfolio problem where the "return" of the portfolios are models' scoring functions.
- Integrating stress testing into forecasting
 - ► The forecast combination includes forecasts conditional on risk factors (volatilities), called baseline forecasts, and forecasts conditional on the VaR of risk factors, called stress forecasts, and denoted by (sVaR,sES)
 - ► The sVaR and sES measures are forecasting versions of the CoVaR and CoES measures of Adrian and Brunnermeier (2016).
- A vulnerability signal
 - ES forecasts are used as predictors of a binary (Logit) model of the probability of the occurrence of VaR violations.

Forecasting Methods

- Forecast methods are specifications of models' forecasts that vary according to the length of the estimation window and the forecast evaluation window.
- Three basic models with an aggregate risk factor (log volatility) as a predictor:
 - simple linear model with variance independent of the risk factor;
 - Same as the first model, except that the variance of a return has the risk factor as predictor
 - A quantile model with the risk factor as predictor
- The choice of simple models is dictated by the goal to examine transparently the properties of the procedure. Extensions are straightforward.
- The evaluation of each model uses the FZO scoring function derived by Patton, Ziegel and Chen (2019),

Main results

- Good performance of out-of-sample tail financial risk forecasts evaluated by backtests for most series even up to a 12-month horizon
- Stress forecasts have a significant role in improving forecasting performance, especially prior to periods of severe financial stress.
- Vulnerability signals anticipated actual stresses in several instances.

The EWS set-up

- Baseline and stress forecasts
- The FZO scoring function
- Optimal forecast combinations
- Constructing a vulnerability signal

Baseline forecasts (1 of 3)

Model 1

$$R_{t+h}^{i,j} = \alpha_h^{i,j} + \beta_h^{i,j} V_t^i + \sigma_{t+h}^{i,j} \eta_{t+h}^{i,j}$$

$$\tag{1}$$

The baseline forecasts (projections) of the h-month-ahead expected return and (VaR_{τ}, ES_{τ}) are:

$$E_t(\hat{R}_{t+h}^{i,j}) \equiv \hat{\alpha}_h^{i,j} + \hat{\beta}_h^{i,j} V_t^i$$
 (2)

$$VaR_{\tau}(\hat{R}_{t+h}^{i,j}) = E_t(\hat{R}_{t+h}^{i,j}) + \hat{\sigma}_{t+h}^{i,j}G(\tau)$$
(3)

$$\mathsf{ES}_{\tau}(\hat{R}_{t+h}^{i,j}) = \mathsf{E}_{t}(\hat{R}_{t+h}^{i,j}) - \hat{\sigma}_{t+h}^{i,j} \mathsf{H}(\tau) \tag{4}$$

Baseline forecasts (2 of 3)

Model 2

Model 2's projection of the h-month-ahead return is the same as that of Model 1, but the variance depends on the risk factor:

$$\sigma_{2t+h} = \exp(\phi_0 + \phi_1 V_t) \tag{5}$$

The h-month-ahead baseline (VaR. ES) forecasts of Model 2 are therefore:

$$VaR_{\tau}(\bar{R}_{t+h}) = E_t(\hat{R}_{t+h}^{i,j}) + \sqrt{\exp(\bar{\phi}_0 + \bar{\phi}_1 V_t)}G(\tau)$$
(6)

$$ES_{\tau}(\bar{R}_{t+h}) = E_{t}(\hat{R}_{t+h}^{i,j}) - \sqrt{\exp(\bar{\phi}_{0} + \bar{\phi}_{1}V_{t})}H(\tau)$$
(7)

Baseline forecasts (3 of 3)

Model 3 (quantile model)

$$VaR_{\tau}(\hat{R}_{t+h}^{i,j}) = \hat{\alpha}_{h}^{i,j}(\tau) + \hat{\beta}_{h}^{i,j}(\tau)V_{t}^{i}$$
(8)

Conditional h-month-ahead ES forecast:

$$ES_{\tau}(\hat{R}_{t+h}^{i,j}) = E_t R_{t+h}^{i,j} - \tau^{-1} \hat{\sigma}_{t+h}^{i,j}$$
(9)

Gourieroux and Li (2012):

$$E_t R_{t+h}^{i,j} - \tau^{-1} \hat{\sigma}_{t+h}^{i,j} = L_{ij}^h(\tau) VaR_{\tau}(\hat{R}_{t+h}^{i,j})$$
 (10)

$$L_{ij}^{h}(\tau) = c_{ij,1}^{h}(\tau)I_{(VaR_{\tau}(\hat{R}_{t+h}^{ij})<0)} + c_{ij,2}^{h}(\tau)I_{(VaR_{\tau}(\hat{R}_{t+h}^{ij})>0)}$$
(11)

$$ES_{\tau}(\bar{R}_{t+h}^{ij}) = [\hat{c}_{ij,1}^{h}(\tau)I_{VaR_{\tau}(\hat{R}_{t+h}^{ij}) < 0} + \hat{c}_{ij,2}^{h}(\tau)I_{VaR_{\tau}(\hat{R}_{t+h}^{ij} > 0)}]VaR_{\tau}(\hat{R}_{ij,t+h}^{j})$$
(12)

Example of in-sample estimation of the models

Table: US, full sample

	horizon	Model 1			Model 2			Model 3		
	h	beta(h)	p-value	beta(h)	p-value	phi(h)	p-value	beta(tau,h)	p-values	
RNF	1	-2.54	0.00	-0.88	0.02	1.88	0.00	-6.37	0.00	
	3	-1.84	0.00	-0.85	0.24	1.51	0.00	-3.08	0.05	
	6	-1.23	0.15	-0.88	0.41	1.38	0.00	-2.91	0.01	
	12	-2.72	0.05	-3.74	0.02	1.33	0.00	-2.45	0.02	
RB	1	-3.76	0.00	-1.91	0.00	1.71	0.00	-9.20	0.00	
	3	-4.82	0.00	-2.01	0.06	1.29	0.00	-0.97	0.67	
	6	-4.70	0.00	-2.37	0.14	1.00	0.00	-2.04	0.17	
	12	-3.10	0.13	-2.88	0.23	0.84	0.00	-0.76	0.61	

Stress forecasts

- Stress forecasts are (VaR,ES) return forecasts conditional on CoVaRs of risk factors.
- CoVaRs of risk factors capture domestic and external tail risk shocks in reduced-form.
- (a) VaR of the risk factor V_t^i in country i;
 - (b) VaR of the leave-one-out average of risk factors across countries: $V_t^{-i} \equiv \sum_{k \neq i}^{N} \frac{V_t^k}{N-1}$, (c) quantile levels: $\tau' < \tau$:

$$VaR_{\tau'}(V_t^i) = a^i(\tau') + b^i(\tau')V_{t-1}^{-i} + c^i(\tau')V_{t-1}^i$$
(13)

$$VaR_{\tau'}(V_t^{-i}) = a^{-i}(\tau') + b^{-i}(\tau')V_{t-1}^{-i}$$
(14)

• Two stress scenarios defined by the following CoVaRs:

domestic
$$co_1 VaR_{\tau'}(V_t^i) = \hat{a}^i(\tau') + \hat{b}^i(\tau')V_{t-1}^{-i} + \hat{c}^i(\tau')VaR_{\tau'}(V_{t-1}^i)$$
 (15)

external
$$co_2 VaR_{\tau'}(V_t^i) = \hat{a}^i(\tau') + \hat{b}^i(\tau') VaR_{\tau'}(V_{t-1}^{-i}) + \hat{c}^i(\tau') V_{t-1}^i$$
 (16)

The FZO scoring function

• I use the (strictly consistent) FZO scoring function derived by Patton, Ziegel and Chen (2019, Proposition 1), given by:

$$FZO(VaR_{t+h}, ES_{t+h}) \equiv -\frac{1}{\tau ES_{t+h}} I(R_{t+h} \leq VaR_{t+h}) (VaR_{t+h} - R_{t+h}) + \frac{VaR_{t+h}}{ES_{t+h}} + \log(-VaR_{t+h}) - 1$$
(17)

- The FZO scoring function applies to strictly negative values of VaR and ES, and it has a **negative orientation**: lower value indicate higher scores.
- Backtests: the DQ and DES tests adapted from Engle and Manganelli (1994) by Patton, Ziegler and Chen (2019).
- In priciple, other backtests can be used

"Optimal" forecast combinations (1 of 2)

Set-up

- $(VaR_m(\hat{R}_{t+h}), ES_m(\hat{R}_{t+h}))$ are the h-period ahead forecast at t of forecasting method m
- Let M be the total number of forecasting methods.
- The data range [t w, t] is the evaluation window of size w at the forecasting date t
- ullet The data range [t-we,t] is the estimation window of the forecasting models
- $f_m(t,h)$: the FZO score associated with the h-month-ahead forecast of method m.

The forecasting strategy is implemented at each date in four steps described next.

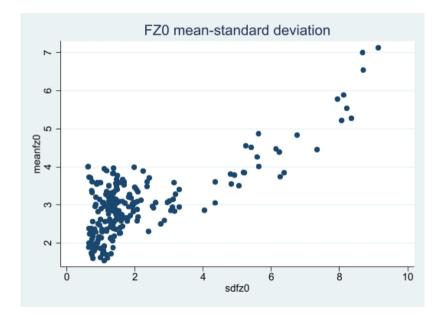
"Optimal" forecast combinations (2 of 2)

- For each $m \in M$, dynamic VaR and ES backtests are run over data of the evaluation window [t w, t].
 - ► Any model for which the null hypothesis is rejected at a p-value less or equal to 0.10 is excluded from the forecast combination.
 - ▶ The set of the models included in the combination is $M' \subseteq M$.
 - if M' turns out to be empty, all models are included in the combination
- 2 Minimum variance portfolio of scoring functions. The M'x1 vector of optimal weights ω^* solves:

$$\min_{\omega} \ \omega' \Sigma^{-1} \omega$$
, subject to $\omega' \iota = 1$ and $\omega \geq 0$

1 The h-period ahead forecast combination for VaR and ES are given by:

$$(VaR_{\tau}(\hat{R}_{t+h}), ES_{\tau}(\hat{R}_{t+h})) = (\sum_{m=1}^{M} \omega_{t}^{*m} VaR_{m}(\hat{R}_{t+h}), \sum_{m=1}^{M} \omega_{t}^{*m} ES_{m}(\hat{R}_{t+h}))$$
(18)



Construction of a forecast combination: simple example

Table: Forecast combinations' weights, three models

horizon (months)		Model 1	Model 2	Model 3	FZ0 portfolio MEAN	FZ0 portfolio SD
1	no becktest	0.55	0.45	0.00	9.20	1.47
	becktested	0.00	1.00	0.00	8.05	1.69
3	no becktest	0.60	0.40	0.00	18.36	1.98
	becktested	0.00	1.00	0.00	16.90	2.08
6	no becktest	0.63	0.37	0.00	27.64	2.14
	becktested	0.63	0.37	0.00	27.64	2.14
12	no becktest	0.09	0.91	0.00	37.50	2.28
	becktested	0.00	0.00	0.00		

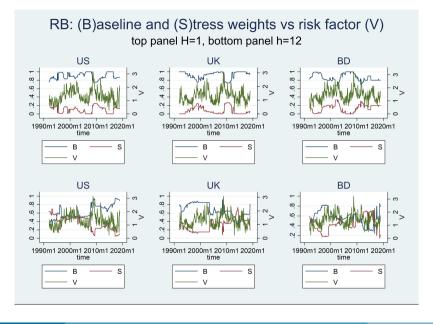
Methods and results

Forecast combinations include the following forecasting methods:

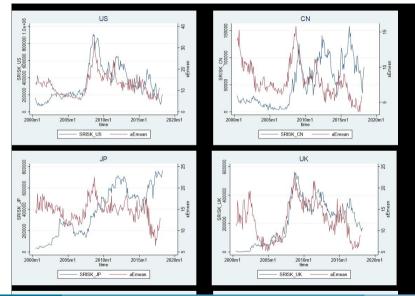
- Baseline forecasts of each model and their Equally Weighted Combinations (EWCs)
 obtained with 120-month and 84-month rolling estimation windows;
- EWC forecast combinations of the two stress test specifications Stress 1 (external) and Stress 2 (domestic) using a 84-month rolling estimation window.
- Backtest rolling evaluation window of 60 months
- A total of 10 forecasting methods

Statistics of forecast combinations' weights

	Horizon (months)		h=1			h=12	
		Mean	Min	Max	Mean	Min	Max
US	Mod.1 (w=120)	0.11	0.02	0.28	0.04	0.00	0.19
	Mod.1 (w=84)	0.11	0.01	0.29	0.09	0.00	0.23
	Mod.2 (w=120)	0.12	0.02	0.21	0.07	0.00	0.21
	Mod.2 (w=84)	0.14	0.03	0.40	0.08	0.00	0.29
	Mod.3 (w=120)	0.10	0.01	0.23	0.07	0.00	0.29
	Mod.3 (w=84)	0.10	0.00	0.33	0.17	0.03	0.33
	EWC (w=120)	0.11	0.00	0.18	0.05	0.00	0.16
	EWC (w=84)	0.10	0.00	0.16	0.06	0.00	0.20
	Stress 1 EWC (w=84)	0.03	0.00	0.16	0.19	0.03	0.34
	Stress 2 EWC (w=84)	0.09	0.00	0.32	0.19	0.00	0.54
G7 averages	Baseline	0.90	0.69	1.00	0.69	0.34	0.94
	Stress	0.10	0.00	0.31	0.31	0.06	0.66



Comparisons with SRISK (Engle and Brownlee, 2017)



The vulnerability index (VI)

- VI is a signal of the probability of VaR violations (p=0.10)
- The Logit model: $P(I_{t+h}) = \Lambda(X_{t-l}\beta)$ Prediction: $\hat{P}(I_{t+h}) \equiv E_t \Lambda(X_{t-l}\hat{\beta})$ where $I_{t+h} = 1$ if $R_{t+h} < \hat{V}aR(R_{t+h})$, 0 otherwise, and X_{t-l} : vector of predictors (ES)
- Define the threshold $P \in (0, 1)$. The standard ROC confusion matrix is:

	$R_{t+h} < \hat{V} a R(R_{t+h})$	$R_{t+h} \geq \hat{V} a R(R_{t+h})$
$\hat{P}(I_{t+h}) - P \geq 0$	a ₁₁ (P)	a ₁₀ (P)
$\hat{P}(I_{t+h}) - P < 0$	$a_{01}(P))$	a ₀₀ (P))

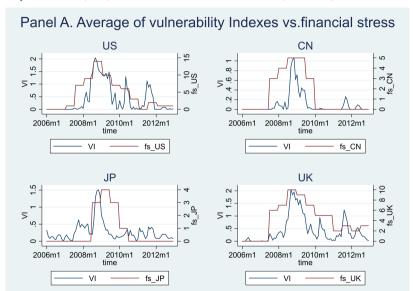
- $P^* = argmin \ a_{01}(P) + a_{01}(P)$ (minimization of the sum of forecast errors)
- The vulnerability index is defined by:

$$VI(R_{t+h}) = \max\{0, \hat{P}(I_{t+h}) - P^*\}$$

AUROCs of the Logit model

		RNF			RB		
	h (months)	Mean	Min	Max	Mean	Min	Max
US	1	0.82	0.78	0.85	0.78	0.75	0.80
	3	0.86	0.82	0.90	0.84	0.81	0.86
	6	0.86	0.81	0.89	0.85	0.81	0.87
	12	0.81	0.50	0.88	0.86	0.83	0.88
G-7 average	1	0.83	0.79	0.86	0.82	0.79	0.85
	3	0.86	0.81	0.89	0.85	0.80	0.88
	6	0.84	0.79	0.87	0.83	0.79	0.87
	12	0.82	0.75	0.87	0.83	0.79	0.86

Vulnerability Index (VI) for banks vs. Romer(2017) stress index



Conclusion

- This paper formulates an EWS based on forecast combinations of (VaR,ES) pairs for indicators of tail financial risk in the non-financial and banking sectors
- The EWS exploits backtesting for model selection in forecast combinations and integrates stress testing scenarios into forecasting
- The implementation on data for the G7 countries shows that the proposed EWS is promising in delivering timely early warning signals for tail risks.
- The proposed methodology can be easily and usefully expanded in several directions exploiting its flexibility.