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Motivation

@ The financial crisis of 2007-2009 prompted significant efforts at central banks and
bank regulatory agencies in designing early warning systems (EWS) in the financial
sector.

@ The current implementation of key Basel bank regulations is increasingly relying on
banking system-wide tail risk forecasts as embedded in stress testing exercises.

@ The EWS in this paper builds on the literature taking a risk management approach to
the modeling and measurement of tail financial risks

@ Methodological approach: rather than conducting a horse race among competing
models looking for a winner, the proposed EWS exploits the potential of several
competing (mis-specified) forecasting models to improve forecasting performance.
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The Early Warning System (EWS) in a nutshell

@ The EWS s based on real-time multi-period forecast combinations of Value-at-Risk
(VaR) and Expected Shortfalls (ES) of portfolio returns of non-financial firms and banks.

@ Forecast combinations include baseline (VaR,ES) forecasts conditional on a domestic
risk factor, as well as (sVaR,sES) forecasts conditional on CoVaRs of the risk factor

@ Focus on surveillance in real-time.

@ Implemented using monthly data of the G-7 economies for the period
1975:01-2018:12 (current paper),

@ On goingrevision: 1975:01-2023:04
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Three novel features

@ Weight (model) selection (NEW relative to current posted paper)

» At each forecasting date, model forecasts are included in the combination if they pass an
out-of-sample backtest in a previous evaluation period.

» The weight of selected model forecasts solve a minimum variance portfolio problem
where the "return” of the portfolios are models’ scoring functions.

@ Integrating stress testing into forecasting

» The forecast combination includes forecasts conditional on risk factors (volatilities), called
baseline forecasts, and forecasts conditional on the VaR of risk factors, called stress
forecasts, and denoted by (sVaR,sES)

» The sVaR and sES measures are forecasting versions of the CoVaR and CoES measures of
Adrian and Brunnermeier (2016).

@ A vulnerability signal

» ES forecasts are used as predictors of a binary (Logit) model of the probability of the
occurrence of VaR violations.
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Forecasting Methods

@ Forecast methods are specifications of models’ forecasts that vary according to the
length of the estimation window and the forecast evaluation window.

@ Three basic models with an aggregate risk factor (log volatility) as a predictor:

@ simple linear model with variance independent of the risk factor;
@ Same as the first model, except that the variance of a return has the risk factor as predictor
© A quantile model with the risk factor as predictor

@ The choice of simple models is dictated by the goal to examine transparently the
properties of the procedure. Extensions are straightforward.

@ The evaluation of each model uses the FZ0 scoring function derived by Patton, Ziegel
and Chen (2019),
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Main results

@ Good performance of out-of-sample tail financial risk forecasts evaluated by backtests
for most series even up to a 12-month horizon

@ Stress forecasts have a significant role in improving forecasting performance,
especially prior to periods of severe financial stress.

@ Vulnerability signals anticipated actual stresses in several instances.
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The EWS set-up

@ Baseline and stress forecasts

@ The FZ0 scoring function

@ "Optimal” forecast combinations
@ Constructing a vulnerability signal
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Baseline forecasts (1 of 3)

Model 1
iy i iy /i N H]
Rt+h =ap + Bh Vé + Oty nlitn (1)

The baseline forecasts (projections) of the h-month-ahead expected return and (VaR, ES;)
are:

E(RY ) = &) + BV (2)
VaR, (R ) = E«(RY ) + &, ,G(7) (3)
ES-(RiLy) = Ed(ReLy) — 0%L,4H(r) (@)
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Baseline forecasts (2 of 3)

Model 2

Model 2’s projection of the h-month-ahead return is the same as that of Model 1, but the
variance depends on the risk factor:

o2t+h = exp(¢o + #1Vi) (5)
The h-month-ahead baseline (VaR, ES) forecasts of Model 2 are therefore:

VaR-(Resn) = Ex(RY,) + \/exp(do + 61Ve)G(7) (6)

ES-(Repn) = Ex(RE,) — \/exp(do + d1Ve)H(r) (7)
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Baseline forecasts (3 of 3)

Model 3 (quantile model)

VaR-(RY ) = &))() + B (r)Vi (8)
Conditional h-month-ahead ES forecast:
ES,(R,) = BRI, — 51, )
Gourieroux and Li (2012):
ERY, — 77267, = Lh(7)VaR- (R ,) (10)
Li(r) = cfa(r ) var, (R RI.,)<0) + ¢l o(7 ) var. (RY ,)>0) (11)
ES-(RL,p) = [&] 1(7 T)vag, (&,)<0 +6;},2(T)’VaRT(R" >0 VaR- (R, h) (12)
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Example of in-sample estimation of the models

Table: US, full sample

Model 1 Model 2 Model 3
horizon

h beta(h) p-value beta(h) p-value phi(h) p-value beta(tau,h) p-values
RNF 1 -2.54 0.00 -0.88 0.02 1.88 0.00 -6.37 0.00

3 -1.84 0.00 -0.85 0.24 1.51 0.00 -3.08 0.05

6 -1.23 0.15 -0.88 041 1.38 0.00 -2.91 0.01

12 -2.72 0.05 -3.74 0.02 1.33 0.00 -2.45 0.02
RB 1 -3.76 0.00 -1.91 0.00 1.71 0.00 -9.20 0.00

3 -4.82 0.00 -2.01 0.06 1.29 0.00 -0.97 0.67

6 -4.70 0.00 -2.37 0.14 1.00 0.00 -2.04 0.17

12 -3.10 0.13 -2.88 0.23 0.84 0.00 -0.76 0.61
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Stress forecasts
@ Stress forecasts are (VaR,ES) return forecasts conditional on CoVaRs of risk factors.
@ CoVaRs of risk factors capture domestic and external tail risk shocks in reduced-form.

@ (a) VaR of the risk factor V{; in country i;

. k
(b) VaR of the leave-one-out average of risk factors across countries: V' = Zﬁﬂ %

(c) quantile levels: 7 < 7

VaR,/(Vi) = d'(r') + b'(r")V | + d()Vi_y (13)
VaR,(V; ") = a~ (') + b~(r")V, ', (14)

@ Two stress scenarios defined by the following CoVaRs:
domestic  coVaR, (Vi) = a'(+') + b(r )Vt__"1 + éi(T’)VaR (Vi) (15)
external  co,VaR, (Vi) = a'(+') + b(+ "WaR. (V') + gV, (16)
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The FZ0 scoring function

@ | use the (strictly consistent) FZ0 scoring function derived by Patton, Ziegel and Chen
(2019, Proposition 1), given by:

1
FZO(VaR¢ p, ESt1h) = _ml(Rt—&-h < VAR p)(VaRe h — Reypn)+
(17)
VARt og(—VaResp) — 1
EStin

@ The FZO0 scoring function applies to strictly negative values of VaR and ES, and it has a
negative orientation: lower value indicate higher scores.

@ Backtests: the DQ and DES tests adapted from Engle and Manganelli (1994) by Patton,
Ziegler and Chen (2019).

@ Inpriciple, other backtests can be used
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"Optimal” forecast combinations (1 of 2)
Set-up
® (VaRm(Rein), ESm(Re.n)) are the h-period ahead forecast at t of forecasting method m

@ Let M be the total number of forecasting methods.

@ Thedatarange [t — w, t] is the evaluation window of size w at the forecasting date t
@ The datarange [t — we, t] is the estimation window of the forecasting models

@ fm(t, h): the FZO score associated with the h-month-ahead forecast of method m.

The forecasting strategy is implemented at each date in four steps described next.
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"Optimal” forecast combinations (2 of 2)

@ For eachm € M, dynamic VaR and ES backtests are run over data of the evaluation
window [t — w, t].
» Any model for which the null hypothesis is rejected at a p-value less or equal to 0.10 is
excluded from the forecast combination.
» The set of the models included in the combinationis M’ C M.
» if M’ turns out to be empty, all models are included in the combination

@ Minimum variance portfolio of scoring functions.

The M'x1 vector of optimal weights w* solves:

min 'Y Yw, subjectto w't=1 and w >0

w

© The h-period ahead forecast combination for VaR and ES are given by:

M M
(VAR (Resn), ES-(Repn)) = (O wi™VaRm(Resn), Y~ wi™ESm(Reih)) (18)

m=1 m=1
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Construction of a forecast combination: simple example

Table: Forecast combinations’ weights, three models

horizon Modell Model2 Model3 FZO0portfolio FZO portfolio
(months) MEAN SD
1 no becktest 0.55 0.45 0.00 9.20 1.47
becktested 0.00 1.00 0.00 8.05 1.69
3 no becktest 0.60 0.40 0.00 18.36 1.98
becktested 0.00 1.00 0.00 16.90 2.08
6 no becktest 0.63 0.37 0.00 27.64 2.14
becktested 0.63 0.37 0.00 27.64 2.14
12 no becktest 0.09 0.91 0.00 37.50 2.28
becktested 0.00 0.00 0.00
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Methods and results

Forecast combinations include the following forecasting methods:

@ Baseline forecasts of each model and their Equally Weighted Combinations (EWCs)
obtained with 120-month and 84-month rolling estimation windows;

@ EWC forecast combinations of the two stress test specifications Stress 1 (external) and
Stress 2 (domestic) using a 84-month rolling estimation window.

@ Backtest rolling evaluation window of 60 months

@ Atotal of 10 forecasting methods
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Statistics of forecast combinations’ weights

|  Horizon (months) h=1 \ h=12 |

| Mean Min Max | Mean Min Max |

us ‘ Mod.1 (w=120) 0.11 0.02 028 ‘ 0.04 0.00 0.19 ‘
‘ Mod.1 (w=84) 0.11 0.01 0.29 ‘ 0.09 0.00 0.23 ‘

‘ Mod.2 (w=120) 0.12 0.02 021 ‘ 0.07 0.00 0.21 ‘

‘ Mod.2 (w=84) 0.14 003 040 ‘ 0.08 0.00 0.29 ‘

‘ Mod.3 (w=120) 0.10 001 0.23 ‘ 0.07 0.00 0.29 ‘

‘ Mod.3 (w=84) 0.10 000 0.33 ‘ 0.17 0.03 0.33 ‘

‘ EWC (w=120) 0.11 0.00 0.18 ‘ 0.05 0.00 0.16 ‘

‘ EWC (w=84) 010 0.00 0.16 ‘ 0.06 0.00 0.20 ‘

‘ Stress1EWC(w=84) 0.03 000 0.16 ‘ 0.19 0.03 0.34 ‘

‘ Stress 2 EWC (w=84) 0.09 000 0.32 ‘ 0.19 0.00 0.54 ‘

G7 averages Baseline 090 069 100 | 069 034 094 |
Stress 0.10 0.00 0.31 ‘ 0.31 0.06 0.66 ‘
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RB: (B)aseline and (S)tress weights vs risk factor (V)
top panel H=1, bottom panel h=12
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Comparisons with SRISK (Engle and Brownlee, 2017)
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The vulnerability index (VI)

@ Vlis asignal of the probability of VaR violations (p=0.10)
@ The Logit model: P(ly,) = A(X;_18))  Prediction: P(ly,p) = EA(X;_15))

where I, , = 1if Ry, < VaR(Ryp), 0 otherwise, and X;_;: vector of predictors (ES)
@ Define the threshold P € (0, 1). The standard ROC confusion matrix is:

Rtrh < VaR(Rip)

Rith > VAR(Riih)

P(It+h) —P > 0 Gll(P)

aio(P)

P(ltth) —P <O do1(P))

doo(P))

@ P* =argmin apy(P) + ao1(P) (minimization of the sum of forecast errors)

@ The vulnerability index is defined by:

VI(Re,p) = max{0, P(l ) — P*}
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AUROC:s of the Logit model

| RNF RB |
\ h(months) Mean Min Max Mean Min Max |
‘ uUs 1 0.82 0.78 0.85 0.78 0.75 0.80 ‘
‘ 3 0.86 0.82 0.90 0.84 0.81 0.86 ‘
‘ 6 0.86 0.81 0.89 0.85 0.81 0.87 ‘
‘ 12 081 050 088 086 083 0.88 ‘

G-7 average 1 0.83 0.79 0.86 0.82 0.79 0.85

3 0.86 081 0.89 0.85 0.80 0.88

6 084 0.79 087 083 079 0.87

12 0.82 0.75 0.87 0.83 0.79 0.86
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Vulnerability Index (VI) for banks vs. Romer(2017) stress index

Panel A. Average of vulnerability Indexes vs.financial stress
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Conclusion

@ This paper formulates an EWS based on forecast combinations of (VaR,ES) pairs for
indicators of tail financial risk in the non-financial and banking sectors

@ The EWS exploits backtesting for model selection in forecast combinations and
integrates stress testing scenarios into forecasting

@ The implementation on data for the G7 countries shows that the proposed EWS is
promising in delivering timely early warning signals for tail risks.

@ The proposed methodology can be easily and usefully expanded in several directions
exploiting its flexibility.
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