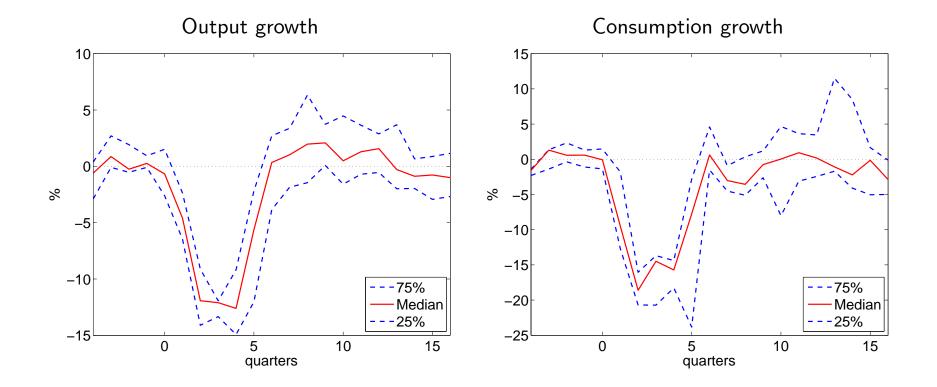
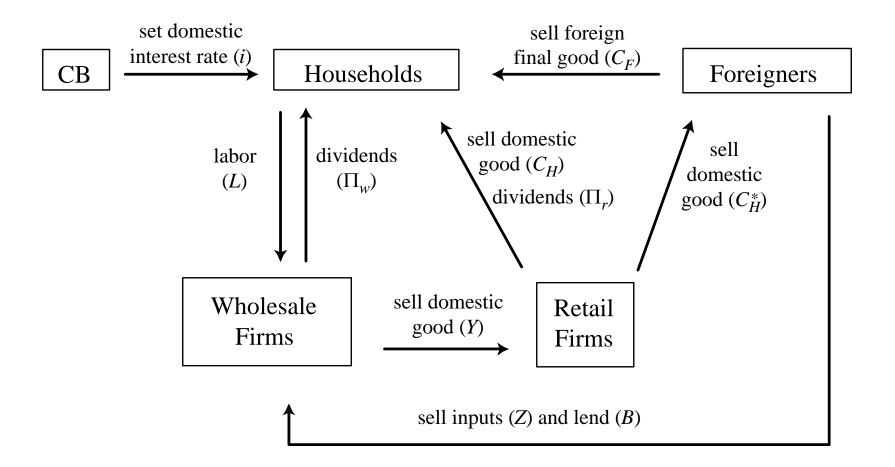

Monetary Policy under Sudden Stops

Vasco Cúrdia Federal Reserve Bank of New York*

November, 2006

*The views expressed are those of the author and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.


• Two stories


Monetary policy under sudden stops

- Facts
- A model for emerging markets
 - trade-offs created by sudden stops
 - allows the evaluation of monetary policy
- Responses to a sudden stop under alternative policies
 - Importance of the demand side
 - Peg more contractionary than flexible exchange rates
 - Relevance of monetary policy stance

• Collapse of domestic production and domestic demand

- Balance sheet effects
- Debt denominated in foreign currency: the "original sin"
- Imported inputs

• Technology for firm j

$$Y_t(j) = A_t \left\{ \alpha^{\frac{1}{\phi}} L_t(j)^{\frac{\phi-1}{\phi}} + (1-\alpha)^{\frac{1}{\phi}} \left[\omega_t(j) Z_{t-1}(j) \right]^{\frac{\phi-1}{\phi}} \right\}^{\frac{\phi}{\phi-1}}$$

with

 $\omega_t(j) \equiv \text{idiosyncratic shock to productivity of imported input}$

 $E_t\left[\omega_{t+1}\left(j\right)\right] = 1$

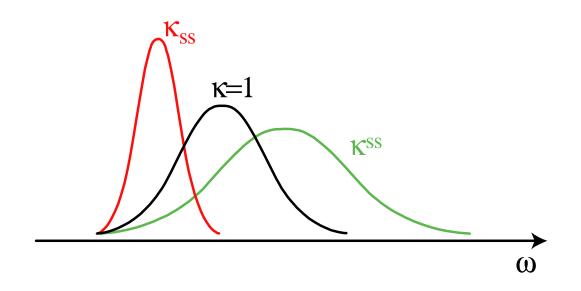
Returns on imported inputs

• Return on imported input defined as:

$$R_{Z,t+1}(j) \equiv \frac{P_{w,t+1}Y_Z(L_{t+1}(j), Z_t(j))}{S_t P_{Z,t}^*}$$

• Given idiosyncratic shock and CES assumption, can write

$$R_{Z,t+1}(j) = \omega_{t+1}(j) R_{Z,t+1}$$


Foreign lenders

• Foreigners perceptions

$$\omega_{t+1}^{*}(j) = \omega_{t+1}(j) \kappa_{t}$$

with

$$\kappa_t : \begin{cases} \text{ normal times } (\mathcal{S}_t = \mathcal{N}) \Rightarrow \kappa_t = 1 \\ \text{ sudden stop } (\mathcal{S}_t = \mathcal{U}) \Rightarrow \kappa_t \in [\kappa_{ss}, \kappa^{ss}] \end{cases}$$

• Balance sheet:

$$S_t B_t(j) = S_t P_{Z,t}^* Z_t(j) - N_t(j)$$

• Debt contract satisfies:

$$\bar{\omega}_{t+1}(j) \frac{R_{Z,t+1} S_t P_{Z,t}^* Z_t(j)}{S_{t+1}} = R_{B,t}(j) B_t(j)$$

 and

$$(1 + i_t^*) B_t(j) = E_t \left[(1 - F^*(\bar{\omega}_{t+1}(j))) R_{B,t}(j) B_t(j) \right] \\ + (1 - \mu) E_t \left[\int_0^{\bar{\omega}_{t+1}(j)} \omega^* \frac{R_{Z,t+1} S_t P_{Z,t}^* Z_t(j)}{S_{t+1}} dF^*(\omega^*) \right]$$

Wholesale firms FOC

- Firms choose $Z_t(j)$, $\bar{\omega}_t(j)$, $R_{B,t}(j)$ and $N_t(j)$
- All firms take the same decisions regarding these variables
- Uncovered Interest Parity (UIP) relation:

$$(1+i_t) E_t \left[\frac{C_{t+1}^{-\sigma}}{P_{t+1}} \right] = (1+i_t^*) E_t \left[\frac{C_{t+1}^{-\sigma} S_{t+1}}{P_{t+1}} \lambda_{t+1} \right]$$

• Return on imported inputs' risk premium relation:

$$E_t \left[\frac{C_{t+1}^{-\sigma}}{P_{t+1}} \Upsilon_{t+1} R_{Z,t+1} \right] = (1+i_t^*) E_t \left[\frac{C_{t+1}^{-\sigma}}{P_{t+1}} \frac{S_{t+1}}{S_t} \lambda_{t+1} \right]$$

• Different risk premia:

$$\begin{array}{ccc} SP_Z^*Z & N + \Pi_w \\ \Rightarrow R_Z & \Rightarrow (1+i) \\ & SB \\ \Rightarrow \tilde{R}_B \end{array}$$

• The return on imported inputs is the weighted average of capital costs

$$R_Z = (1-b)(1+i) + b\tilde{R}_B$$

with

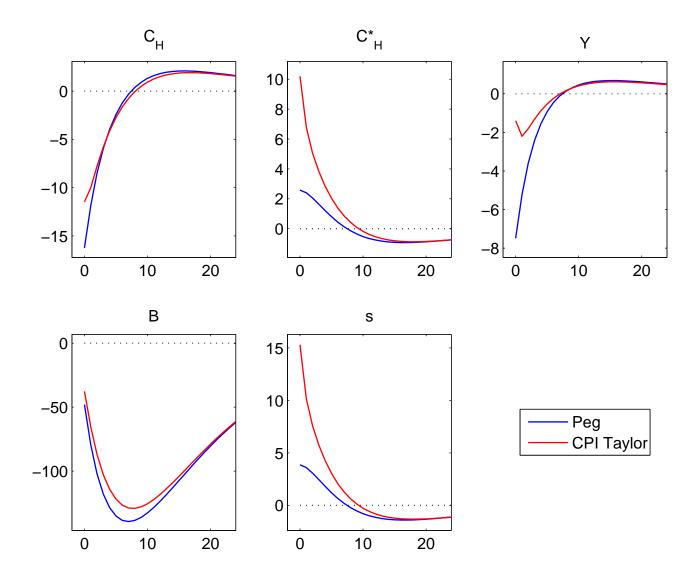
$$b \equiv \frac{B}{P_Z^* Z}$$

The transmission mechanism

- Change in perceptions \Rightarrow foreigners demand higher risk premium
- Firms
 - reduce new purchases of the imported input
 - reduce debt and increase net worth (to reduce risk premium) \Rightarrow dividends are then reduced
- Households face tighter budget constraint due to lower dividends
 - cut consumption \Rightarrow lower domestic demand
- Firms face lower domestic demand
 - output falls
 - cut on labor \Rightarrow real wages fall \Rightarrow further constrains households' budget
- Balance of payments equilibrium implies real devaluation
 - expands foreign demand for the domestic good \Rightarrow dampens the impact on the total demand for the domestic good
 - contracts domestic demand for foreign good
 - higher cost of purchasing imported input

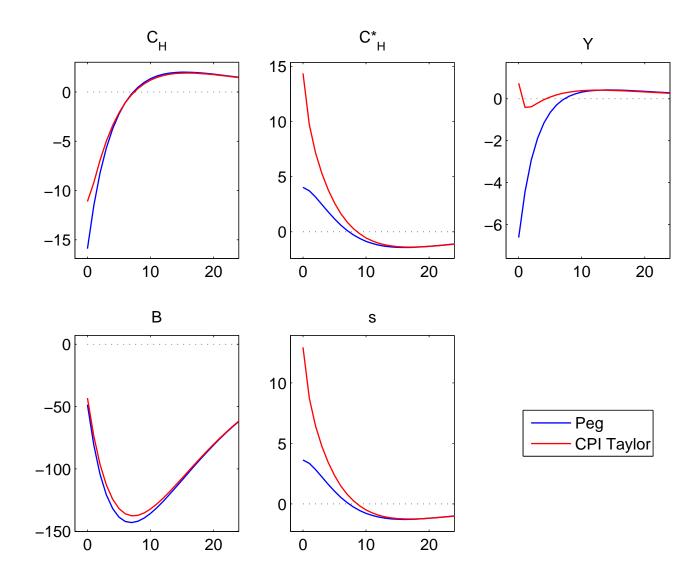
The transmission mechanism

- Three main effects:
 - cost-push shock (cost of purchasing and financing the imported input)
 - contraction of domestic demand
 - expansion of foreign demand

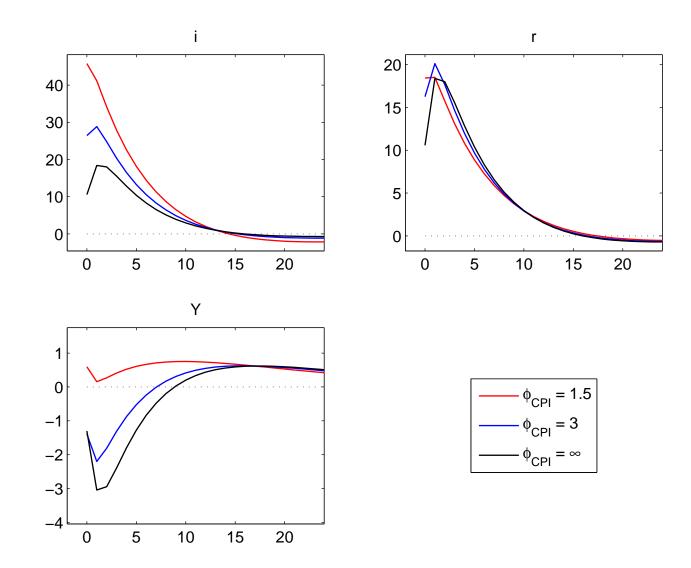

• Monetary policy controls the interest rate using a simple rule:

$$\frac{1+i_t}{1+i} = \left(\frac{P_t}{P_{t-1}}\right)^{\phi_{CPI}} \left(\frac{P_{H,t}}{P_{H,t-1}}\right)^{\phi_{DPI}} \left(\frac{Y_t}{Y}\right)^{\frac{\phi_Y}{4}} \left(\frac{S_t}{S_{t-1}}\right)^{\phi_S}$$

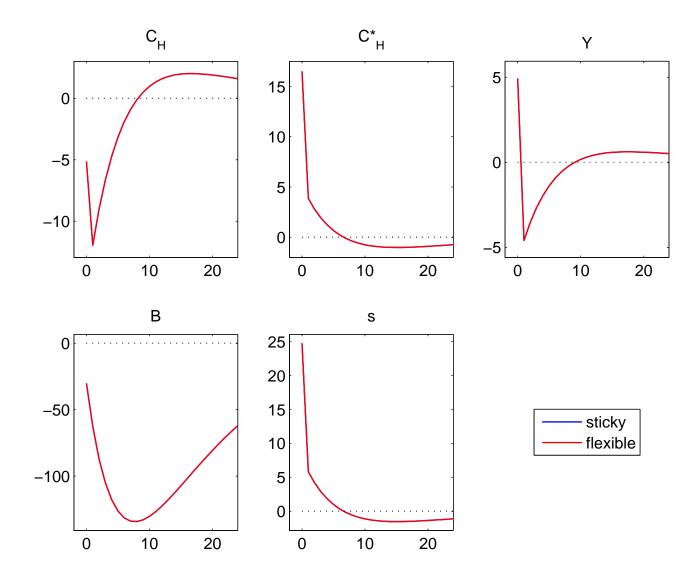
with


	ϕ_{CPI}	ϕ_{DPI}	ϕ_Y	ϕ_S
Peg	0	0	0	∞
Taylor rule (CPI)	3	0	0.75	0
Taylor rule (DPI)	0	3	0.75	0
Inflation stabilization (CPI)	∞	0	0	0
Inflation stabilization (DPI)	0	∞	0	0

Responses to a sudden stop: Peg vs. CPI Taylor



- Chari, Kehoe and McGrattan (2005)
 - sudden stop is equivalent to increase in net exports
 - therefore it leads to an expansion of the output
- In my model
 - that is only one side of the story
 - need to account for the fall in the domestic demand
- Reason for the difference:
 - in their model everything in tradables and foreign demand infinitely elastic


Responses to a sudden stop: elastic foreign demand

Responses to a sudden stop: degree of inflation reaction

Responses to a sudden stop: DPI stabilization

Concluding remarks

- Presented a framework tailored for emerging markets and suitable for monetary policy analysis
 - It does match some of the facts associated to sudden stops
 - Showed the importance of the demand side
- Confirmed that a peg is more contractionary than flexible exchange rates
- Showed the importance of the monetary policy stance (towards inflation)
 - more than focus on changes of the interest rate

- Framework simplifies welfare evaluation allowing for further discussion of policy issues:
 - welfare comparison of alternative rules
 - optimal policy
 - discretion vs. commitment
- Shock is structural enough to allow for further extensions
 - allowing it to react to state variables