Agency Costs, Net Worth, and Endogenous Business Fluctuations

Giovanni Favara

HEC – University of Lausanne

Bank of Finland/CEPR Conference – Credit and the Macroeconomy

Helsinki, 2-3 November, 2006

This Paper

• I propose a theory of endogenous business fluctuations based on credit market imperfections.

This Paper

- I propose a theory of endogenous business fluctuations based on credit market imperfections.
- I use an agency problem in a borrower-lender relationship to study how entrepreneur and investor's incentives vary over the cycles in a way that booms lead to recessions and recessions to booms, even though no external shocks hit the economy.

Motivation

• Large macro-literature have stressed the role of credit frictions as a source of amplification and persistence of exogenous shocks to the economy:

- Bernanke and Gertler (89) and Kiyotaki and Moore (97).

Motivation

• Large macro-literature have stressed the role of credit frictions as a source of amplification and persistence of exogenous shocks to the economy:

- Bernanke and Gertler (89) and Kiyotaki and Moore (97).

- Little attention has been paid to the possibility that credit frictions also generate endogenous fluctuations:
 - Aghion, Banerjee and Piketty (99), Aghion, Bacchetta and Banerjee (03), Matsuyama (06).

Motivation

• Large macro-literature have stressed the role of credit frictions as a source of amplification and persistence of exogenous shocks to the economy:

- Bernanke and Gertler (89) and Kiyotaki and Moore (97).

- Little attention has been paid to the possibility that credit frictions also generate endogenous fluctuations:
 - Aghion, Banerjee and Piketty (99), Aghion, Bacchetta and Banerjee (03), Matsuyama (06).
- Industrialized and emerging countries have experienced erratic financial cycles, whereby credit booms and high investment are followed by credit contractions and recessions.

Road Map

- 1. Building Blocks and Main Idea.
- 3. Static Model.
- 4. Dynamic Model.
- 5. Conclusions.

Building Blocks

- Investment productivity depends upon the *joint-non-contractible* actions of an investor and an entrepreneur:
 - Entrepreneur effort essential to evaluate and select projects,
 - Investor control crucial to select only profitable projects.

Building Blocks

- Investment productivity depends upon the *joint-non-contractible* actions of an investor and an entrepreneur:
 - Entrepreneur effort essential to evaluate and select projects,
 - Investor control crucial to select only profitable projects.
- Entrepreneur moral hazard, generates a monotonic investment dynamics that, at low level of entrepreneur net worth, constraints investment.

Building Blocks

- Investment productivity depends upon the *joint-non-contractible* actions of an investor and an entrepreneur:
 - Entrepreneur effort essential to evaluate and select projects,
 - Investor control crucial to select only profitable projects.
- Entrepreneur moral hazard, generates a monotonic investment dynamics that, at low level of entrepreneur net worth, constraints investment.
- Investor moral hazard, generates a non-monotonic investment dynamics that, at high level of entrepreneur net worth, originates endogenous fluctuations.

Main Idea

- Investor incentive to control entrepreneur is countercyclical:
 - High in recessions, "forcing" the entrepreneur to select only profitable projects,
 - Weak in booms, "permitting" that less profitable projects get their way.

Theoretical Implications

1. Increased firm internal funds lower rather than increase economic efficiency.

Theoretical Implications

- 1. Increased firm internal funds lower rather than increase economic efficiency.
- 2. Recessions are beneficial.

Theoretical Implications

- 1. Increased firm internal funds lower rather than increase economic efficiency.
- 2. Recessions are beneficial.
- 3. Exogenous shocks to the economy may be dampened rather than amplified.

The Model

• Two agents, entrepreneur (E) and investor (I). Two periods, t = 1, 2.

The Model

- Two agents, entrepreneur (E) and investor (I). Two periods, t = 1, 2.
- Both E and I are risk neutral and protected by limited liability.

The Model

- Two agents, entrepreneur (E) and investor (I). Two periods, t = 1, 2.
- Both E and I are risk neutral and protected by limited liability.
- E has an endowment w
 - $\,w\,\,{\rm can}$ be stored at a gross return of r
 - used to partly finance an investment project, which has a fixed outlay of 1 > w.

• E has access to J investment projects characterized by (Π_J, b_J) ex-ante identical.

- E has access to J investment projects characterized by (Π_J, b_J) ex-ante identical.
- E understands the projects characteristics after paying a costly evaluation effort e.

Projects: $J = \{G, B, U\}$

	G	B	
Private Benefits	0	b	$-\infty$
Cash Flows	Π	0	П

$$\Pi > b \ge r$$

- E has access to J investment projects characterized by (Π_J, b_J) ex-ante identical.
- E understands the projects characteristics after paying a costly evaluation effort e.

Projects: $J = \{G, B, U\}$

	G	B	
Private Benefits	0	b	$-\infty$
Cash Flows	Π	0	Π

$$\mathbf{\Pi} > b \ge r$$

• A conflict of interest arises if

$$b > (1 - \alpha) \Pi$$

where α is the fraction of cash flows Π that E must share with I.

Timing

t = 0	t = 1/2	t = 1	t = 2
E exerts effort	Financing occurs	I exerts control	$\Pi and / or \ b$
	and contract signed	or monitoring	realize.
$e\in (0,1) \longrightarrow$	$(1-w), \;\; lpha$	$m\in (0,1)$	
\downarrow			
rw			

First Best

Can be attained if $b < (1 - \alpha)\Pi$

First Best

Can be attained if $b < (1 - \alpha)\Pi$

$$\max_{e} (1-e)rw + e(1-\alpha)\Pi - c_e e^2/2$$
$$s.t. \ \alpha\Pi = r(1-w)$$
$$e^{fb} = \frac{\Pi - r}{2}$$

 c_e

Second Best

If $b > (1 - \alpha) \Pi$

Second Best

If $b > (1 - \alpha) \Pi$

$$\max_{e,\alpha} \ e \left\{ m^* (1-\alpha) \Pi + (1-m^*) b \right\} + (1-e) r w - c_e e^2 / 2$$

s.t.
$$m^* = rg\max_m e^* \left\{ m \alpha \Pi + (1-m) \times 0 - c_m \frac{m^2}{2} \right\} + (1-e^*)(1-w)r$$

I's BEC E's PC $0 \le lpha \le 1$

The Basic Trade-off

$$m^* = \frac{\alpha \Pi}{c_m}$$

$$e^* = \frac{b - rw - m^* \{b - (1 - \alpha)\Pi\}}{c_e}$$

$$lpha = rac{\sqrt{2r(1-w)c_m}}{\mathsf{\Pi}}$$

Implications

Using
$$lpha=rac{\sqrt{2r(1-w)c_m}}{\Pi}$$

 $b > (1 - \alpha) \Pi$ if

$$w < 1 - \frac{(\Pi - b)^2}{2rc_m} \equiv \overline{w}$$

Implications

Using
$$lpha=rac{\sqrt{2r(1-w)c_m}}{\Pi}$$

$$b > (1 - lpha) \Pi$$
 if

$$w < 1 - rac{(\Pi - b)^2}{2rc_m} \equiv \overline{w}$$

E's participation constraint:

$$e(\widetilde{w}) \geq {\sf 0}$$
 or $w \geq \widetilde{w}$

Lemma 1 There exist two cut-off values \widetilde{w} and \overline{w} , with $\widetilde{w} < \overline{w}$ such that:

1. If $0 \le w \le \tilde{w}$ the entrepreneur has not sufficient wealth to undertake the project. In this case, e = m = 0.

Lemma 2 There exist two cut-off values \widetilde{w} and \overline{w} , with $\widetilde{w} < \overline{w}$ such that:

- 1. If $0 \le w \le \tilde{w}$ the entrepreneur has not sufficient wealth to undertake the project. In this case, e = m = 0.
- 2. If $\widetilde{w} < w < \overline{w},$ the project is funded and the equilibrium levels of effort and monitoring are:

$$e^* = \frac{b - rw - m^* \{b - (1 - \alpha)\Pi\}}{c_e}$$
$$m^* = \frac{\alpha \Pi}{c_m}$$
with
$$\alpha = \frac{\sqrt{2r(1 - w)c_m}}{\Pi}$$

Lemma 3 There exist two cut-off values \widetilde{w} and \overline{w} , with $\widetilde{w} < \overline{w}$ such that:

- 1. If $0 \le w \le \tilde{w}$ the entrepreneur has not sufficient wealth to undertake the project. In this case, e = m = 0.
- 2. If $\widetilde{w} < w < \overline{w},$ the project is funded and the equilibrium levels of effort and monitoring are:

$$e^* = \frac{b - rw - m^* \{b - (1 - \alpha)\Pi\}}{c_e}$$
$$m^* = \frac{\alpha \Pi}{c_m}$$
with
$$\alpha = \frac{\sqrt{2r(1 - w)c_m}}{\Pi}$$

3. If $w \geq \overline{w}$, the conflict of interest vanishes. The optimal level of effort is

$$e^{fb} = \frac{\Pi - r}{c_e}$$

Output and Productivity

Overall output

 $y = e \{m\Pi + (1-m)b\}$

Productive output

 $p=em\Pi$

Output and Productivity

Overall output

 $y = e \left\{ m \Pi + (1 - m)b \right\}$

Productive output

 $p = em \Pi$

Proposition 1. For $w \in (\widetilde{w}, \overline{w})$,

- **1** Total output, y, increases monotonically.
- **2** Productive output is non-monotonic. There is a threshold $w^* \in (\tilde{w}, \overline{w})$ such that p, rises for $w < w^*$ and falls for $w > w^*$.

Comparative Statics

• Firms with low net worth undertake few investment projects (Hubbard (98)).

Comparative Statics

- Firms with low net worth undertake few investment projects (Hubbard (98)).
- Firms with high leverage invest less (Stein (03)).

Comparative Statics

- Firms with low net worth undertake few investment projects (Hubbard (98)).
- Firms with high leverage invest less (Stein (03)).
- Counter-cyclical bank lending standards (Rajan (95), Asea and Bloomberg (98)).

Dynamics

- OLG model à la Diamond (65):
 - Unit mass of risk neutral agents that live for two periods and care only about second period consumption. Young agents are heterogenous: η are entrepreneurs, 1η , lenders.

Dynamics

- OLG model à la Diamond (65):
 - Unit mass of risk neutral agents that live for two periods and care only about second period consumption. Young agents are heterogenous: η are entrepreneurs, 1η , lenders.
 - Each young is endowed with L units of labor.

Technology

• Final sector produces a consumption good,

$$Y_t = A_t K_t^\beta L_t^{1-\beta}$$

Technology

• Final sector produces a consumption good,

$$Y_t = A_t K_t^{\beta} L_t^{1-\beta}$$

• Labor is supplied inelastically by young t agents.

Technology

• Final sector produces a consumption good,

$$Y_t = A_t K_t^\beta L_t^{1-\beta}$$

- Labor is supplied inelastically by young t agents.
- As in Romer (86), $A_t = K_t^{\gamma}$ with $\gamma + \beta = 1$, hence:

$$ho_t = eta$$
 and $w_t = w(k_t) = (1 - eta)k_t$

• Intermediate sector, produces capital k_t at t - 1, and sell it to the FGS at t at the price β .

- Intermediate sector, produces capital k_t at t 1, and sell it to the FGS at t at the price β.
 - To be activated, a project requires 1 > w of consumption goods.

- Intermediate sector, produces capital k_t at t 1, and sell it to the FGS at t at the price β.
 - To be activated, a project requires 1 > w of consumption goods.
 - Projects are $\{G, B, U\}$
 - * G produces capital goods, Π ,
 - * B produces consumption goods b.

Credit Market

• Perfect supply of capital

 $w_t > \eta e_t$

so storage is always used in equilibrium, pinning down the interest rate in the economy, r.

Credit Market

• Perfect supply of capital

 $w_t > \eta e_t$

so storage is always used in equilibrium, pinning down the interest rate in the economy, r.

• The lending contract lasts for one period only.

Investment Dynamics

First-Best

 $w_t(k_t)$ is used to undertake technology, G

$$e_t^{fb} = \frac{\Pi \beta - r}{c_e}, \qquad \qquad i_t = e_t^{fb} \times \eta$$

$$k_{t+1} = i_t imes \Pi = rac{(\Pi eta - r)}{c_e} imes \eta imes \Pi$$

which is independent of period-t variables.

Equilibrium with an Agency Problem

• k_{t+1} depends on how saving $w_t(k_t)$ is allocated between G and B.

$$i = \left[\underbrace{e_t \left[m_t(w_t)
ight] imes m_t(w_t) imes \Pi}_{k_{t+1}} + \underbrace{e_t \left[m_t(w_t)
ight] imes (1 - m_t(w_t)) imes b}_{b_{t+1}}
ight] \eta$$

 $k_{t+1} = K(e(w(k_t)), m(w(k_t)))$

where $K_e > 0$ and $K_m > 0$.

Equilibrium with an Agency Problem

• k_{t+1} depends on how saving $w_t(k_t)$ is allocated between G and B.

$$i = \left[\underbrace{e_t \left[m_t(w_t)
ight] imes m_t(w_t) imes \Pi}_{k_{t+1}} + \underbrace{e_t \left[m_t(w_t)
ight] imes (1 - m_t(w_t)) imes b}_{b_{t+1}}
ight] \eta$$

$$k_{t+1} = K(e(w(k_t)), m(w(k_t)))$$

where $K_e > 0$ and $K_m > 0$.

• Hence, even though the supply of credit is perfectly elastic, k_{t+1} depends indirectly on w_t . As a consequence the accumulation path of capital

$$\frac{dk_{t+1}}{dk_t} = \left(\frac{\partial K}{\partial e}\frac{\partial e}{\partial w} + \frac{\partial K}{\partial m}\frac{\partial m}{\partial w}\right)\frac{\partial w}{\partial k_t}$$

may be non-monotonic.

All together

Since $w_{t+1} = (1 - \beta)k_t$ the law of motion of k_t is expressed in terms of w_t :

$$w_{t+1} = \Phi(w_t) = \begin{cases} 0 & \text{if } w_t < \widetilde{w}_t \\ \phi(w_t) & \text{if } \widetilde{w}_t \le w_t \le \overline{w}_t \\ w^{fb} & \text{if } w_t > \overline{w}_t \end{cases}$$

All together

Since $w_{t+1} = (1 - \beta)k_t$ the law of motion of k_t is expressed in terms of w_t :

$$w_{t+1} = \Phi(w_t) = \begin{cases} 0 & \text{if } w_t < \widetilde{w}_t \\ \phi(w_t) & \text{if } \widetilde{w}_t \le w_t \le \overline{w}_t \\ w^{fb} & \text{if } w_t > \overline{w}_t \end{cases}$$

Lemma 4 The map $\phi(w_t)$ is unimodal with a critical point at $w^* \in (\tilde{w}, \overline{w})$. Moreover, if

$$\underline{\underline{c}}_m < c_m < \overline{\overline{c}}_m$$

holds, the mapping $\phi(w)$ has at most one interior steady state and maps $(\tilde{w}, \overline{w})$ into itself.

$$c_m > \overline{c}_m$$
, or $\lambda = (\Pi eta - b) < \underline{\lambda}$

 $\underline{c}_m < c_m < \overline{c}_m, \text{ or } \underline{\lambda} < \lambda = (\Pi \beta - b) < \overline{\lambda}$

 $\underline{c}_m < c_m < \overline{c}_m, \, \text{ or } \underline{\lambda} < \lambda < \overline{\lambda}$

 $c_m < \underline{c}_m, \text{or } \lambda > \overline{\lambda}$

- c_m, λ , varies across financial systems, and industries.
 - Large vs. small banks, i.e. organizational structure (Stein (02)).

- c_m, λ , varies across financial systems, and industries.
 - Large vs. small banks, i.e. organizational structure (Stein (02)).
 - Banks vs. VCs (Hellman, et al. (04), Kaplan, et al. (05)).

- c_m, λ , varies across financial systems, and industries.
 - Large vs. small banks, i.e. organizational structure (Stein (02)).
 - Banks vs. VCs (Hellman, et al. (04), Kaplan, et al. (05)).
 - Bank based vs. market based economies (shareholders vs. bank control).

- c_m , λ , varies across financial systems, and industries.
 - Large vs. small banks, i.e. organizational structure (Stein (02)).
 - Banks vs. VCs (Hellman, et al. (04), Kaplan, et al. (05)).
 - Bank based vs. market based economies (shareholders vs. bank control).
 - Young vs. mature technologies.

Conclusions

• Double moral hazard in credit market may be a source of endogenous investment fluctuations.

Conclusions

- Double moral hazard in credit market may be a source of endogenous investment fluctuations.
- Lending standards shape investment dynamics.

Conclusions

- Double moral hazard in credit market may be a source of endogenous investment fluctuations.
- Lending standards shape investment dynamics.
- Exogenous shocks to firm net worth may be dampened rather than amplified.

Literature Review

- Bernanke and Gertler (89, 90), Kiyotaki and Moore (97):
 - Credit frictions generate persistence and amplification of exogenous shocks.
- Aghion, Banerjee and Piketty (99), Matsuyama (04):
 - Credit frictions are source of endogenous business cycles.
- Philippon (05):
 - Shareholders control and managers' empire building preferences amplify expansions.

Literature Review

- Diamond (86, 91), Besanko and Kanatas (93), Holmström and Tirole (97):
 - Banks reduce entrepreneurs misbehavior through auditing or control.
- Rajan and Winton (95), Manove Padilla and Pagano (01):
 - Collateral affects banks' incentives.
- Burkart, Gromb and Panunzi (97):
 - Optimal ownership structure to solve the trade-off between control and initiative.

First Best

Can be attained if $b < (1 - \alpha)\Pi$

$$\max_{e} (1-e)rw + e(1-\alpha)\Pi - c_e e^2/2$$

s.t. $\alpha \Pi = r(1-w)$

$$e^{fb} = \frac{\Pi - r}{c_e}$$

$$w_t \uparrow \Longrightarrow \begin{cases} m_t \downarrow \\ e_t \uparrow \end{cases} \implies \begin{cases} b_t \uparrow \\ k_{t+1} \downarrow \end{cases} \implies w_{t+1} \downarrow$$

$$\Longrightarrow \left\{ \begin{array}{c} m_{t+1} \uparrow \\ e_{t+1} \downarrow \end{array} \right. \Longrightarrow \left\{ \begin{array}{c} b_{t+1} \downarrow \\ k_{t+2} \uparrow \end{array} \right. \Longrightarrow w_{t+2} \uparrow$$