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Abstract

In this paper we evaluate the empirical relevance of learning by private
agents in an estimated medium-scale DSGE model. We replace the standard
rational expectation assumption in the Smets and Wouters (2007) model by a
constant gain learning mechanism. If agents know the correct structure of the
model and only learn about the parameters, both expectation mechanisms re-
sult in a similar fit, and only the transition dynamics that are generated by spe-
cific initial beliefs can distinguish the two approaches. If, in addition, agents
use only a reduced information set in forming the perceived law of motion,
the implied model dynamics change and for some initial beliefs the marginal
likelihood of the model is further improved. However, the estimated gain pa-
rameter is estimated to be small which suggests a crucial role for the initial
beliefs to explain the improved fit. The learning models with the highest pos-
terior probabilities add some additional persistence to the DSGE model that
reduce the gap between the IRFs of the DSGE model and the more data-driven
DSGE-VAR model. However, the additional dynamics that are introduced by
the learning process do not systematically alter the estimated structural para-
meters related to the nominal and real frictions in the DSGE model.

JEL codes: C11, D84, E30, E52
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1 Introduction

In this paper, we evaluate the potential role of adaptive learning in an estimated
medium–sized DSGE model. In Smets and Wouters (2003-2007) it was shown that
these models, when equiped with a rich set of frictions and a general stochastic
structure, explain the data relatively well. However, the DSGE–VAR approach as
applied in Del Negro et al. (2007) shows that these models are still misspecified
along various dimensions. Some of the responses to shocks in the DSGE–VAR are
characterised by a high persistence, which could be hard to obtain under restric-
tions imposed by a DSGE model with real and nominal frictions. One potential
dimension of misspecification in these models might be the stringent assumption
of rational or model–consistent expectations. This assumption implies that eco-
nomic agents, when forming their expectations about future outcomes, know ex-
actly the structural model, its parameters, and the stochastic structure. Endowing
the agents with so much knowledge can be hardly considered realistic; therefore,
it is important to check the consequences of relaxing this assumption.

In this paper, we evaluate empirically the fit of a DSGE model while allowing
the agents to form their expectations under imperfect knowledge. More specif-
ically, we assume that private agents use adaptive expectations: expectations of
the forward–looking variables are obtained as linear functions of past model vari-
ables. Coefficients of these linear functions, commonly known as beliefs, are re–
estimated every period using constant gain (perpetual learning) recursive least
squares algorithm. The beliefs about the relationship between expectations and
current and past variables adapt to the patterns recently observed in the data.
Our approach is similar to the exercise of Milani (2004), who in contrast to us uses
a smaller model which under rational expectations does not fit the data as well,
and to the work of Orphanides and Williams (2003-2007) who concentrate more
on the monetary policy implications of imperfect information and learning.

Several authors have suggested that adaptive learning can enhance the propaga-
tion mechanism of the DSGE models and generate the persistence that is otherwise
caused by these models’ frictions or the driving stochastic processes. For instance,
Orphanides and Williams (2005) illustrate how adaptive learning can lead to in-
flation scares or to increased inflation persistence. Milani estimates a small scale
model both under RE and learning and shows that the learning reduces the scale
of structural frictions and results in an improved marginal likelihood relative to
the RE model.

We believe that the role of learning is probably smaller in a medium–scale model
that fits the data well, with the residuals close to white noise. When driven by thin
tail Gaussian innovations, dynamics under learning will not tend to deviate too
much from the RE outcomes at least if the initial beliefs are close to the RE beliefs:
the potential benefits of adaptive learning are related to the induced time varying
beliefs, but this variation is very much limited.

If the adaptive learning can indeed generate persistence that substitutes for the

2



structural inertia sources present in the DSGE models, it is interesting to under-
stand the exact nature of such persistence. One possibility is the effect of perma-
nent learning dynamics on the expectations that follows from the historical shocks
that hit the economy; in other words, when the limiting invariant distribution of
the beliefs is achieved, more persistence is observed permanently. Another tran-
sitional effect is the result of movement from specific initial beliefs towards the
beliefs compatible with the invariant distribution; this effect disappears as soon as
the transition is over. Given short samples available for estimating DSGE models,
distinguishing between permanent and transitory effects can be hard.

The specific form of the initial beliefs is very difficult to discover because they
depend on historical observations that are not directly taken into account in the
likelihood function. We apply several procedures in this paper to estimate these
initial beliefs. They can be based on presample data information. Alternatively,
one can search for initial beliefs that maximise the likelihood of the in–sample
data. Here one can assume that the initial beliefs are consistent with the final esti-
mated model, or search for the specific initial beliefs that optimise the in–sample
likelihood through their impact on the transition dynamics. By disconnecting the
initial beliefs completely from the pre–sample observations, the last approach may
be driven by spurious correlations in the sample data.

The dynamics generated by the learning process is crucially influenced by the
assumptions about the information set that is used in forming the beliefs. An
extreme assumptions is that agents know the reduced form model but have to es-
timate its parameters. In this case, the agents will use the correct minimum state
variable (MSV) representation to estimate their expectation regressions. In our
case, this assumption impies that agents use a state vector containing 20 variables,
many of which are unobserved, forcing the agents to use estimates generated by
the recursive Kalman filter. In addition, the traditional adaptive learning approach
as applied in Evans and Honkapohja (2001) also assumes that agents know ex-
actly the exogenous driving processes.Under these assumptions, the standard lo-
cal properties of the learning dynamics can be summarized by the E–stability con-
cept. This case is referred to as the MSV–learning model. We can further differen-
tiate between a sitution in which the agents additionally learn about the constants
(the inflation target, real interest rate, deterministic trend growth rate) and the
one where we assume that the ‘correct’ values of these parameters are known. It
may be more realistic to assume that agents use only a limited information set in
forming their expectations. In our setup, the most natural assumption would be
that agents use only the observed data in their belief regressions. This learning
specification is referred to as VAR–learning in the sequel.

If learning increases the persistence of the model, the roots of the reduced form
model increase, implying that the probablity of roots exceeding one in absolute
value (and generating unstable outcomes) increases. Such events are supressed
by imposing projection facility while updating the beliefs. These corrections com-
plicate the estimation procedure by introducing discontinuties in the likelihood
surface. In the empirical applications, we also estimate the gain parameter that
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determines the speed of updating of expectation functions’ coefficients. The gain
is also related to the time horizon that agents take into account when updating
their beliefs. Higher gains increases the probability that the dynamics of the sys-
tem hits the stability boundary during the learning process or that the moment
matrices take on unrealistic values. Such events further complicate our estima-
tions.

The learning is introduced at the level of the linearised Euler equations. The impli-
cations of learning for the agents’ budget constraints are therefore neglected. See
Preston (2005) for a more consistent treatment of learning in DSGE models.

The structure of the paper is as follows. First we briefly review the medium size
DSGE model based on the work of CEE (2005) and estimated on US data in Smets
and Wouters (2007). The DSGE–VAR approach is used to indicate some of the po-
tential misspecification issues. Then we present the assumptions about the learn-
ing process that are considered in this paper. In section four, we evaluate the
potential role of learning in these medium–sized DSGE model by studying the
statistics in terms of volatility and persistence in the simulated data for different
specifications of the beliefs and for different values of the learning horizon or gain
parameter. Then we turn to the estimation outcomes of the model again for differ-
ent specifications of the perceived law of motion.

2 Model

In this paper, we evaluate the potential role of adaptive learning dynamics in an
estimated medium-scale DSGE model. The model that we consider in this applica-
tion is the one estimated in Smets and Wouters (2007) applied to the US economy
over the period 1966-2005. This DSGE model contains many frictions that affect
both nominal and real decisions of households and firms. The model is based on
CEE (2005) and Smets and Wouters (2003). As in Smets and Wouters (2005), we
extend the model so that it is consistent with a balanced steady state growth path
driven by deterministic labour-augmenting technological progress. Households
maximise a non-separable utility function with two arguments (goods and labour
effort) over an infinite life horizon. Consumption appears in the utility function
relative to a time-varying external habit variable. Labour is differentiated by a
union, so that there is some monopoly power over wages, which results in an ex-
plicit wage equation and allows for the introduction of sticky nominal wages à la
Calvo. Households rent capital services to firms and decide how much capital to
accumulate given the capital adjustment costs they face. As the rental price of cap-
ital changes, the utilisation of the capital stock can be adjusted at increasing cost.
Firms produce differentiated goods, decide on labour and capital inputs, and set
prices, again according to the Calvo model. The Calvo model in both wage and
price setting is augmented by the assumption that prices that are not re-optimised
are partially indexed to past inflation rates. Prices are therefore set in function
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of current and expected marginal costs, but are also determined by the past in-
flation rate. The marginal costs depend on wages and the rental rate of capital.
Similarly, wages depend on past and expected future wages and inflation. In both
goods and labour markets we replace the standard Dixit-Stiglitz aggregator with
an aggregator which allows for a time-varying demand elasticity which depends
on the relative price as in Kimball (1995). As shown by Eichenbaum and Fischer
(forthcoming), the introduction of this real rigidity allows us to estimate a more
reasonable degree of price and wage stickiness. The model also contains seven
stochastic shocks to technology, preferences and policy behaviour. The number of
structural shocks match with the number of observables that are used in estima-
tion.

2.1 The decision problems of firms and households and the equi-

librium conditions

2.1.1 Final goods producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i)
as in Kimball (1995). The final good producers buy intermediate goods, package
them into Yt, and sell the final good to consumers, investors and the government
in a perfectly competitive market. They maximize profits:

maxYt,Yt(i) PtYt �
R 1

0 Pt(i)Yt(i)di

s.t.
hR 1

0 G
�

Yt(i)
Yt

; ε
p
t

�
di
i
= 1

where Pt and Pt(i) are the price of the final and intermediate goods respectively,
and G is a strictly concave and increasing function characterised by G(1) = 1. ε

p
t is

an exogenous process that reflects shocks to the aggregator function that result in
changes in the elasticity of demand and therefore in the markup. We will constrain
ε

p
t 2 (0, ∞).

Combining the first–order conditions with respect to Yt(i) and Yt results in:

Yt(i) = YtG0�1
�

Pt(i)
Pt

Z 1

0
G0
�

Yt(i)
Yt

�
Yt(i)

Yt
di
�

As in Kimball (1995), the assumptions on G imply that the demand for input Yt(i)
is decreasing in its relative price, while the elasticity of demand is a positive func-
tion of the relative price (or a negative function of the relative output).
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2.1.2 Intermediate goods producers

Intermediate good producer i uses the following technology:

Yt(i) = εa
t Kt(i)α

�
γtLt(i)

�1�α � γtΦ (1)

where Kt(i) is capital services used in production, Lt(i) is a composite labour input
and Φ is a fixed cost. γt respresents the labour–augmenting deterministic growth
rate in the economy and εa

t is total factor productivity.

The firm’s profit is given by:

Pt(i)Yt(i)�WtLt(i)� Rk
t Kt(i).

where Wt is the aggregate nominal wage rate and Rk
t is the rental rate on capital.

Cost minimization yields the following first–order conditions:

(∂Lt(i)) : Θt(i)γ(1�α)t(1� α)εa
t Kt(i)αLt(i)�α = Wt (2)

(∂Kt(i)) : Θt(i)γ(1�α)tαεa
t Kt(i)α�1Lt(i)1�α = Rk

t (3)

where Θt(i) is the Lagrange multiplier associated with the production function
and equals marginal cost MCt.

Combining these FOCs and noting that the capital–labour ratio is equal across
firms implies:

Kt =
α

1� α

Wt

Rk
t

Lt (4)

The marginal cost MCt is the same for all firms and equal to:

MCt = α�α(1� α)�(1�α)W1�α
t Rk α

t γ�(1�α)t (εa
t )
�1 (5)

Under Calvo pricing with partial indexation to lagged inflation, the optimal price
set by the firm that is allowed to re–optimise results from the following optimisa-
tion problem:

maxePt(i)
Et

∞

∑
s=0

ξs
p

βsΞt+sPt

ΞtPt+s

h ePt(i)(Πs
l=1π

ιp
t+l�1π

1�ιp
� )� MCt+s

i
Yt+s(i)

s.t. Yt+s(i) = Yt+sG0�1
�

Pt(i)Xt,s

Pt+s
τt+s

�
where ePt(i) is the newly set price, ξ p is the Calvo probability of being allowed

to optimise one’s price, ιp is the degree of indexation to lagged inflation, πt is

inflation defined as πt = Pt/Pt�1, [ β
sΞt+sPt
ΞtPt+s

] is the nominal discount factor for firms

6



(which equals the discount factor for the households that are the final owners of
the firms), τt =

R 1
0 G0

�
Yt(i)

Yt

�
Yt(i)

Yt
di and

Xt,s =

(
1 f or s = 0

(Πs
l=1π

ιp
t+l�1π

1�ιp
� ) f or s = 1, ..., ∞

)

The first-order condition is given by:

Et

∞

∑
s=0

ξs
p

βsΞt+sPt

ΞtPt+s
Yt+s(i)

�
Xt,s ePt(i) +

�ePt(i)Xt,s � MCt+s

� 1
G0�1(zt+s)

G0(xt+s)

G00(xt+s)

�
= 0

(6)
where xt = G0�1(zt) and zt =

Pt(i)
Pt

τt.

The aggregate price index is in this case given by:

Pt = (1� ξ p)Pt(i)G0�1
�

Pt(i)τt

Pt

�
+ ξ pπ

ιp
t�1π

1�ιp
� Pt�1G0�1

24π
ιp
t�1π

1�ιp
� Pt�1τt

Pt

35 (7)

2.1.3 Households

Household j chooses consumption Ct(j), hours worked Lt(j), bonds Bt(j), invest-
ment It(j) and capital utilisation Zt(j), so as to maximise the following objective
function:

Et

∞

∑
s=0

βs
�

1
1� σc

(Ct+s(j)� ηCt+s�1)
1�σc

�
exp

�
σc�1
1+σl

Lt+s(j)1+σl

�
subject to the budget constraint:

Ct+s(j) + It+s(j) +
Bt+s(j)

εb
t Rt+sPt+s

� Tt+s (8)

� Bt+s�1(j)
Pt+s

+
Wh

t+s(j)Lt+s(j)
Pt+s

+
Rk

t+sZt+s(j)Kt+s�1(j)
Pt+s

� a(Zt+s(j))Kt+s�1(j) +
Divt+s

Pt+s

and the capital accumulation equation:

Kt(j) = (1� δ)Kt�1(j) + ε
q
t

�
1� S

�
It(j)

It�1(j)

��
It(j) (9)

There is external habit formation captured by the parameter η. The one–period
bond is expressed on a discount basis. εb

t is an exogenous premium in the return
to bonds, which might reflect inefficiencies in the financial sector leading to some
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premium on the deposit rate versus the risk free rate set by the central bank, or
a risk premium that households require to hold the one period bond. δ is the de-
preciation rate, S(�) is the adjustment cost function, with S(γ) = 0, S0(γ) = 0,
S00(�) > 0, and ε

q
t is a stochastic shock to the price of investment relative to con-

sumption goods. Tt+s are lump sum taxes or subsidies and Divt are the dividends
distributed by the intermediate goods producers and the labour unions.

Finally, households choose the utilisation rate of capital. The amount of effective
capital that households can rent to the firms is:

Kt(j) = Zt(j)Kt�1(j) (10)

The income from renting capital services is Rk
t Zt(j)Kt�1(j) , while the cost of

changing capital utilisation is Pta(Zt(j))Kt�1(j).

In equilibrium households will make the same choices for consumption, hours
worked, bonds, investment and capital utilization. The first–order conditions can
be written as (dropping the j index):

(∂Ct) Ξt = exp
�

σc�1
1+σl

Lt
1+σl

�
(Ct � ηCt�1)

�σc (11)

(∂Lt)

�
1

1� σc
(Ct � ηCt�1)

1�σc

�
exp

�
σc�1
1+σl

L1+σl
t

�
(σc�1)Lσl

t = �Ξt
Wh

t
Pt

(12)

(∂Bt) Ξt = βεb
t RtEt

�
Ξt+1

πt+1

�
(13)

(∂It) Ξt = Ξk
t ε

q
t

�
1� S(

It

It�1
)� S0(

It

It�1
)

It

It�1

�
+βEt

�
Ξk

t+1ε
q
t+1S0(

It+1

It
)(

It+1

It
)2
�

(14)

(∂K̄t) Ξk
t = βEt

"
Ξt+1

 
Rk

t+1
Pt+1

Zt+1 � a(Zt+1)

!
+ Ξk

t+1(1� δ)

#
(15)

(∂ut)
Rk

t
Pt

= a0(Zt) (16)

where Ξt and Ξk
t are the Lagrange multipliers associated with the budget and cap-

ital accumulation constraint respectively. Tobin’s Qt = Ξk
t /Ξt and equals one in

the absence of adjustment costs.
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2.1.4 Intermediate labour unions and labour packers

Households supply their homogenous labour to an intermediate labour union
which differentiates the labour services, sets wages subject to a Calvo scheme and
offers those labour services to intermediate labour packers. Labour used by the in-
termediate goods producers Lt is a composite made of those differentiated labour
services Lt(i). As with intermediate goods, the aggregator is the one proposed by
Kimball (1995). The labour packers buy the differentiated labour services, package
Lt, and offer it to the intermediate goods producers.

The labour packers maximize profits:

maxLt,Lt(i) WtLt �
R 1

0 Wt(i)Lt(i)di

s.t.
hR 1

0 H
�

Lt(i)
Lt

; εw
t

�
di
i
= 1

where Wt and Wt(i) are the price of the composite and intermediate labour ser-
vices respectively, and H is a strictly concave and increasing function charac-
terised by H(1) = 1. εw

t is an exogenous process that reflects shocks to the ag-
gregator function that result in changes in the elasticity of demand and therefore
in the markup. We will constrain εw

t 2 (0, ∞). Combining FOCs results in:

Lt(i) = LtH0�1
�

Wt(i)
Wt

Z 1

0
H0
�

Lt(i)
Lt

�
Lt(i)

Lt
di
�

The labour unions are an intermediate between the households and the labor
packers. Under Calvo pricing with partial indexation, the optimal wage set by
the union that is allowed to re-optimise its wage results from the following opti-
misation problem:

maxeWt(i)
Et

∞

∑
s=0

ξs
w

βsΞt+sPt

ΞtPt+s

h eWt(i)(Πs
l=1γπιw

t+l�1π�
1�ιw �Wh

t+s

i
Lt+s(i)

s.t. Lt+s(i) = Lt+sH0�1
�Wt(i)Xw

t,s

Wt+s
τw

t+s

�
where eWt(i) is the newly set wage, ξw is the Calvo probability of being allowed to

optimise one’s wage, τw
t =

R 1
0 H0

�
Lt(i)

Lt

�
Lt(i)

Lt
di and

Xw
t,s =

�
1 f or s = 0

(Πs
l=1γπιw

t+l�1π1�ιw� ) f or s = 1, ..., ∞

�
The first-order condition is given by:

Et

∞

∑
s=0

ξs
w

βsΞt+sPt

ΞtPt+s
Lt+s(i)

�
Xw

t,s
eWt(i) +

� eWt(i)Xw
t,s �Wh

t+s

� 1
H0�1(zw

t+s)

H0(xw
t+s)

H00(xw
t+s)

�
= 0

(17)

9



where xw
t = H0�1(zw

t ) and zw
t =

Wt(i)
Wt

τw
t .

The aggregate wage index is in this case given by:

Wt = (1� ξw) eWtH0�1

" eWtτ
w
t

Wt

#
+ ξwγπιw

t�1π1�ιw� Wt�1H0�1

"
γπιw

t�1π1�ιw� Wt�1τw
t

Wt

#
(18)

The markup of the aggregate wage over the wage received by the households is
distributed to the households in the form of dividends (see the budget constraint
of households).

2.1.5 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in
response to deviations of inflation and output from their respective target levels:

Rt

R�
=

�
Rt�1

R�

�ρ ��πt

π�

�rπ
�

Yt

Y�t

�ry�1�ρ
 

Yt/Yt�1

Y�t /Y�t�1

!r∆y

εr
t (19)

where R� is the steady state nominal rate (gross rate) and Y�t is natural output. The
parameter ρ determines the degree of interest rate smoothing. εr

t is the exogenous
monetary policy shock.

The government budget constraint is of the form

PtGt + Bt�1 = Tt +
Bt

Rt
(20)

where Tt are nominal lump–sum taxes (or subsidies) that also appear in house-
hold’s budget constraint. Government spending is exogenous and expressed rel-
ative to the steady state output path as ε

g
t = Gt/(Yγt).

2.1.6 The natural output level

The natural output level is defined as the output in the flexible price and wage
economy without mark-up shock in prices and wages. Persistent markup shocks
may therefore result in persistent conflicts between the stabilising inflation and
the output gap and therefore in persistent deviations of inflation from the inflation
target.
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2.1.7 Resource constraint

Integrating the budget constraint across households and combining with the gov-
ernment budget constraint and the expressions for the dividends of intermediate
goods producers and labour unions gives the overall resource constraint:

Ct + It + Gt + a(Zt)Kt�1 = Yt (21)

2.2 Detrending and linearization

The model can be detrended with the deterministic trend γ and nominal vari-
ables can be replaced by their real counterparts. The non–linear system is then
linearised around the stationary steady state of the detrended variables. Starred
variables denote steady state values. We first describe the aggregate demand side
of the model and then turn to the aggregate supply.

2.2.1 Aggregate demand side

The aggregate resource constraint is given by:

byt = bgt +
c�
y�
bct +

i�
y�
bit +

rk
�k�
y�
but. (22)

Output (byt) is absorbed by consumption (bct), investment (bit), capital-utilisation
costs that are a function of the capital utilisation rate (but) and exogenous spend-
ing (bgt). We assume that exogenous spending follows a first–order autoregressive
process with an IID–Normal error term and is also affected by the productivity
shock as follows: bgt = ρgbgt�1 + ρgaεa

t + ε
g
t . The latter is empirically motivated by

the fact that in estimation exogenous spending also includes net exports, which
may be affected by domestic productivity developments.

The dynamics of consumption follows from the consumption Euler equation and
is given by:

bct =
1

(1+ (η/γ))
Et [bct+1] +

(η/γ)

(1+ (η/γ))
bct�1

� (1� η/γ)

σc(1+ (η/γ))
(bbt + bRt � Et[bπt+1]) �

(σc � 1)(wh
�L/c�)

σc(1+ (η/γ))
(Et

hbLt+1

i
� bLt).
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Current consumption (bct) depends on a weighted average of past and expected fu-
ture consumption, and on expected growth in hours worked (Et

hbLt+1

i
� bLt), the

ex–ante real interest rate (bRt � Et[bπt+1]) and a disturbance term bbt. This distur-
bance term represents a wedge between the interest rate controlled by the central
bank and the return on assets held by the households. A positive shock to this
wedge increases the required return on assets and reduces current consumption.
At the same time, it also increases the cost of capital and reduces the value of capi-
tal and investment, as shown below. The disturbance is assumed to follow a first–
order autoregressive process with an IID–Normal error term: bbt = ρb

bbt�1 + εb
t .

The dynamics of investment comes from the investment Euler equation and is
given by:

bit =
1

(1+ βγ)
(bit�1 + (βγ)bit+1 +

1
γ2S00

bQk
t ) + bqt, (23)

where S00 is the steady–state elasticity of the capital adjustment cost function and
β = (β/γσc) where β is the discount factor applied by households. As in CEE
(2005), a higher elasticity of the cost of adjusting capital reduces the sensitivity
of investment (bit) to the real value of the existing capital stock ( bQk

t ). Modelling
capital adjustment costs as a function of the change in investment rather than its
level introduces additional dynamics in the investment equation, which is useful
in capturing the hump–shaped response of investment to various shocks. Finally,bqt represents a disturbance to the investment–specific technology process and is
assumed to follow a first–order autoregressive process with an IID–Normal error
term: bqt = ρqbqt�1 + ε

µ
t .

The corresponding arbitrage equation for the value of capital is given by:

bQk
t = �(bbt + bRt � Et[bπt+1]) +

rk
�

rk� + (1� δ)
Et[rk

t+1] +
(1� δ)

rk� + (1� δ)
Et[Qk

t+1]. (24)

The current value of the capital stock ( bQk
t ) depends positively on its expected fu-

ture value and the expected real rental rate on capital (rk
t+1) and negatively on the

ex-ante real interest rate and the risk premium disturbance.

2.2.2 Aggregate supply side

Turning to the supply side, the aggregate production function is given by:

byt = Φ( αbkt + (1� α)bLt + bAt) (25)
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Output is produced using capital (bkt) and labour services (hours worked, bLt). Total
factor productivity ( bAt) is assumed to follow a first-order autoregressive process:bAt = ρa

bAt�1 + εa
t . The parameter α captures the share of capital in production

and the parameter Φ is one plus the share of fixed costs in production, reflecting
the presence of fixed costs in production.

As newly installed capital becomes only effective with a one–quarter lag, current
capital services used in production are a function of capital installed in the previ-
ous period (b̄kt�1) and the degree of capital utilisation (but):

bkt = but +
b̄kt�1.

Cost minimisation by the households that provide capital services implies that the
degree of capital utilisation is a positive function of the rental rate of capital:

but =
1� ψ

ψ
brk

t ,

where ψ is a positive function of the elasticity of the capital utilisation adjustment
cost function and normalized to be between zero and one. When ψ = 1, it is
extremely costly to change the utilisation of capital and as a result the utilisation
of capital remains constant. In contrast, when ψ = 0, the marginal cost of changing
the utilisation of capital is constant and as a result in equilibrium the rental rate
on capital is constant.

The accumulation of installed capital (b̄kt) is not only a function of the flow of in-
vestment but also of the relative efficiency of these investment expenditures as
captured by the investment–specific technology disturbance:

b̄kt = (1� i�
k�
) b̄kt�1 +

i�
k�
bit +

i�
k�
(1+ βγ)γ2S00bqt.

Due to price stickiness as in Calvo (1983) and partial indexation to lagged inflation
of those prices that can not be re–optimised as in Smets and Wouters (2003), prices
adjust only sluggishly to their desired mark–up. Profit maximisation by price–
setting firms gives rise to the following New–Keynesian Phillips curve:

bπt =
1

(1+ βγιp)
(ιpbπt�1+ βγEt [bπt+1]+

1
((φp � 1)εp + 1)

(1� ξ pβγ)(1� ξ p)

ξ p
(cmct))+dλp,t

Inflation (bπt) depends positively on past and expected future inflation, negatively
on the current price mark–up and positively on a price mark–up disturbance
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(dλp,t). The price mark–up disturbance is assumed to follow an ARMA(1,1) process:dλp,t = ρp
\λp,t�1 � µpεp,t�1 + ε

p
t , where ε

p
t is an IID–Normal price mark–up shock.

The inclusion of the MA term is designed to capture the high–frequency fluctua-
tions in inflation.

When the degree of indexation to past inflation is zero (ιp = 0 ), equation (10)
reverts to a standard purely forward–looking Phillips curve. The assumption that
all prices are indexed to either lagged inflation or the steady state inflation rate
ensures that the Phillips curve is vertical in the long run. The speed of adjustment
to the desired mark–up depends among others on the degree of price stickiness
(ξ p), the curvature of the Kimball goods market aggregator (εp) and the steady–
state mark–up, which in equilibrium is itself related to the share of fixed costs in
production (φ� 1) through a zero–profit condition. A higher εp slows down the
speed of adjustment because it increases the strategic complementarity with other
price setters. When all prices are flexible (ξ p = 0 ) and the price mark–up shock is
zero, the inflation equation reduces to the familiar condition that the price mark–
up is constant or equivalently that there are no fluctuations in the wedge between
the marginal product of labour and the real wage. The marginal cost is given by:

bmct = (1� α) bwt + α brk
t � bAt

Cost minimisation by firms will also imply that the rental rate of capital is nega-
tively related to the capital–labour ratio and positively to the real wage (both with
unitary elasticity):

bkt = bwt � brk
t + bLt. (26)

Similarly, due to nominal wage stickiness and partial indexation of wages to infla-
tion, real wages only adjust gradually to the desired wage mark–up:

bwt =
1

(1+ βγ)
( bwt�1 + βγEt [ bwt+1]� (1+ βγιw)bπt + ιwbπt�1 + βγEt [bπt+1]

+
(1� ξwβγ)(1� ξw)

ξw((φw � 1)εw + 1)
[

1
1� η/γ

bct �
η/γ

1� η/γ
bct�1 + σlbLt � bwt ] +dλw,t

The real wage is a function of expected and past real wages, expected, current
and past inflation, the wage mark–up and a wage–markup disturbance (cλw,t). If
wages are perfectly flexible (ξw = 0), the real wage is a constant mark–up over
the marginal rate of substitution between consumption and leisure. In general,
the speed of adjustment to the desired wage mark–up depends on the degree
of wage stickiness (ξw ) and the demand elasticity for labour, which itself is a
function of the steady–state labour market mark–up (φw � 1) and the curvature

14



of the Kimball labour market aggregator (εw). When wage indexation is zero (ιw),
real wages do not depend on lagged inflation. The wage–markup disturbance
(dλw,t) is assumed to follow an ARMA(1,1) process with an IID–Normal error term:dλw,t = ρw

\λw,t�1 � µwεw,t�1 + εw
t . As in the case of the price mark–up shock, the

inclusion of an MA term allows us to pick up some of the high frequency fluctua-
tions in wages.

Finally, the model is closed by adding the following empirical monetary policy
reaction function:

bRt = ρR
bRt�1 + (1� ρR)(rπbπt + ry(byt � by f lex

t ))

+r∆y(byt � byt�1 � (by f lex
t � by f lex

t�1 )) + rt (27)

The monetary authorities follow a generalised Taylor rule by gradually adjust-
ing the policy–controlled interest rate (bRt) in response to inflation and the output
gap, defined as the difference between actual and potential output (Taylor, 1993).
Consistently with the DSGE model, potential output is defined as the level of out-
put that would prevail under flexible prices and wages in the absence of the two
“mark-up” shocks. The parameter captures the degree of interest rate smooth-
ing. In addition, there is also a short–run feedback from the change in the output
gap. Finally, we assume that the monetary policy shocks (rt) follows a first–order
autoregressive process with an IID–Normal error term: brt = ρrbrt�1 + εr

t .

Equations (1) to (13) determine thirteen endogenous variables: byt, bct, bit, bqt, bk,bkt, but, brk
t , dmct, bπt, bwt, bLt and bRt. The complete model also contains the coun-

terparts of these variables in the flexible economy: this gives 11 additional vari-
ables as inflation and the real marginal cost drop out. The stochastic behaviour
of the system of linear rational expectations equations is driven by seven exoge-
nous processes and their respective disturbances: total factor productivity (At, εa

t ),
investment–specific technology (qt, ε

q
t ), risk premium (bt, εb

t ), exogenous spending
(gt, ε

g
t ), price mark–up (λp

t , ε
p
t ), wage mark–up (λw

t , εw
t ) and monetary policy (rt, εr

t)
shocks. Together with the two lagged innovations entering the ARMA processes,
the model contains 40 variables, of which 12 enter with a lead term. Next we turn
to the estimation of the model.

2.3 Estimation under Rational Expectations

The model presented in the previous section is estimated in Smets and Wouters
(2007) under the hypothesis that agents have rational expectations. It was shown
that these models, when equiped with a rich set op frictions and a general stochas-
tic structure, are able to explain the data relatively well and these model have a
forecasting performance that is comparable or even better than purely statistical
VAR or BVAR models. However, Del Negro et al. show that these models are still
misspecified along various dimensions. A combined DSGE–VAR model, where
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the restrictions of the DSGE model are relaxed and treated as a prior restriction on
the VAR model, produces a higher marginal likelihood and produces even better
in terms of out–of–sample forecasts. In addition, the estimated impulse–response
functions of the DSGE–VAR model give some indication of where the misspecifi-
cation is situated. Here we repeat this DSGE–VAR exercise on exactly the model
estimated in Smets and Wouters (2007). The observed misspecification will serve
as a benchmark to evaluate the performance of the models under learning.

2.3.1 Measurement equations

The model is estimated using seven key macro–economic quarterly US time series
as observable variables: the log difference of real GDP, real consumption, real
investment and the real wage, log hours worked, the log difference of the GDP
deflator and the federal funds rate. A full description of the data used is given in
the appendix. The corresponding measurement equation is:

Ot =

2666666664

dlGDPt
dlConst
dlINVt
dlWagt

lHOURSt
dlPt

FEDFUNDSt

3777777775
=

2666666664

γ
γ
γ
γ

l
π
r

3777777775
+

2666666664

byt � byt�1bct � bct�1bit �bit�1bwt � bwt�1bltbπtbRt

3777777775
, (28)

where l and dl stand for log and log difference respectively, γ = 100(γ � 1) is
the common quarterly trend growth rate to real GDP, consumption, investment
and wages,π = 100(Π� � 1) is the quarterly steady–state inflation rate and is
r = 100(γσc Π�/β� 1) the steady–state nominal interest rate. Given the estimates
of the trend growth rate and the steady–state inflation rate, the latter will be de-
termined by the estimated discount rate. Finally, l is steady–state hours–worked.
The model is estimated over the full sample period from 1966:1 till 2004:4.

The estimations are executed using Bayesian estimation methods. First, we esti-
mate the mode of the posterior distribution by maximising the log posterior func-
tion, which combines the prior information on the parameters with the likelihood
of the data. In a second step, the Metropolis–Hastings algorithm is used to get a
complete picture of the posterior distribution and to evaluate the marginal likeli-
hood of the model.

2.3.2 Prior distribution of the parameters

The priors on the stochastic processes are harmonised as much as possible. The
standard errors of the innovations are assumed to follow an inverse gamma dis-
tribution with a mean of 0.10 and two degrees of freedom, which corresponds to
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a rather loose prior. The persistence of the AR(1) processes is beta distributed
with mean 0.5 and standard deviation 0.2. A similar distribution is assumed for
the MA parameter in the process for the price and wage mark–up. The quarterly
trend growth rate is assumed to be Normal distributed with mean 0.4 (quarterly
growth rate) and standard deviation 0.1. The steady–state inflation rate and the
discount rate are assumed to follow a gamma distribution with a mean of 2.5%
and 1% on an annual basis.

Five parameters are fixed in the estimation procedure. The depreciation rate is
fixed at 0.025 (on a quarterly basis) and the exogenous spending–GDP ratio is set
at 18%. Both of these parameters would be difficult to estimate unless the invest-
ment and exogenous spending ratios would be directly used in the measurement
equation. Three other parameters are clearly not identified: the steady–state mark-
up in the labour market (λw), which is set at 1.5, and the curvature parameters of
the Kimball aggregators in the goods and labour market (εp and εw), which are
both set at 10.

The parameters describing the monetary policy rule are based on a standard Tay-
lor rule: the long run reaction on inflation and the output gap are described by
a Normal distribution with mean 1.5 and 0.125 (0.5 divided by 4) and standard
errors 0.25 and 0.05 respectively. The persistence of the policy rule is determined
by the coefficient on the lagged interest rate rate which is assumed to be Normal
around a mean of 0.75 with a standard error of 0.1. The prior on the short run
reaction coefficient to the change in the output–gap is 0.125.

The parameters of the utility function are assumed to be distributed as follows.
The intertemporal elasticity of substitution is set at 1.5 with a standard error of
0.375; the habit parameter is assumed to fluctuate around 0.7 with a standard error
of 0.1 and the elasticity of labour supply is assumed to be around 2 with a standard
error of 0.75. These are all quite standard calibrations. The prior on the adjustment
cost parameter for investment is set around 4 with a standard error of 1.5 (based
on CEE, 2005) and the capacity utilisation elasticity is set at 0.5 with a standard
error of 0.15. The share of fixed costs in the production function is assumed to
have a prior mean of 0.25. Finally, there are the parameters describing the price
and wage setting. The Calvo probabilities are assumed to be around 0.5 for both
prices and wages, suggesting an average length of price and wage contracts of half
a year. This is compatible with the findings of Bils and Klenow (2004) for prices.
The prior mean of the degree of indexation to past inflation is also set at 0.5 in both
goods and labour markets.

2.3.3 Posterior estimates of the parameters

Table 1 summarise the estimation results for both the DSGE and the DSGE–VAR
approach. A fourth order VAR is used in the DSGE–VAR exercise. The DSGE–
VAR with the optimal marginal likelihood gives more or less equal weight to the
data and DSGE model (the hyperparameter λ = 1). The marginal likelihood of
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the DSGE–VAR model is considerably higher than for the DSGE model. The
mode, the mean and the 5 and 95 percentiles of the posterior distribution of the
parameters as obtained by the Metropolis-Hastings algorithm are reported.

{Insert Table 1}

In the DSGE model, the trend growth rate is estimated to be around 0.43, which
is somewhat smaller than the average growth rate of output per capita over the
sample. The posterior mean of the steady state inflation rate over the full sample
is about 3% on an annual basis. The mean of the discount rate is estimated to be
quite small (0.65% on an annual basis). The implied mean steady state nominal
and real interest rates are respectively about 6 % and 3% on an annual basis. In
the DSGE–VAR approach, the data are less informative about these constants: the
estimated mode for the growth rate is 0.38, for the inflation rate it is 2.6%, and for
the annual nominal rate it is it 5.3%.

A number of observations are worth making regarding the estimated processes for
the exogenous shock variables. Overall, the data appears to be very informative
about the stochastic processes for the exogenous disturbances. The productivity,
the government spending and the wage mark–up processes are estimated to be
the most persistent with an AR(1) coefficient of respectively 0.96, 0.98 and 0.97 in
the DSGE model and 0.95, 0.82 and 0.95 in the DSGE–VAR approach . The high
persistence of the productivity and wage mark–up processes implies that at long
horizons most of the forecast error variance of the real variables will be explained
by those two shocks. In contrast, both the persistence and the standard deviation
of the risk premium and monetary policy shock are relatively low (respectively
0.18 and 0.13 in the DSGE model and 0.44 and 0.15 in the DSGE–VAR approach ).
The estimated standard errors of the shocks are systematically lower in the DSGE–
VAR approach.

Turning to the estimates of the main behavioural parameters, we see that in the
DSGE model the mean of the posterior distribution is typically relatively close to
the mean of the prior assumptions. There are a few notable exceptions. Both the
degree of price and wage stickiness are estimated to be quite a bit higher than 0.5.
The average duration of wage contracts is somewhat less than a year; whereas the
average duration of price contracts is about 3 quarters. The mean of the degree
of price indexation (0.23) is on the other hand estimated to be much less then 0.5.
Also the elasticity of the cost of changing investment is estimated to be higher than
assumed a priori, suggesting an even slower response of investment to changes in
the value of capital. Finally, the posterior mean of the fixed cost parameter is es-
timated to be much higher than assumed in the prior distribution (1.62) and the
share of capital in production is estimated to be much lower (0.19). Overall, it ap-
pears that the data is quite informative on the behavioural parameters as indicated
by the lower variance of the posterior distribution relative to the prior distribution.
Two exceptions are the elasticity of labour supply and the elasticity of the cost of
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changing the utilisation of capital, where the posterior and prior distributions are
quite similar. The DSGE–VAR parameters in general are close to the DSGE pa-
rameters: the different demand components are estimated to be more sensitive
to the interest rate as both the investment adjustment cost and σc are lower. The
indexation of wages is somewhat lower, but the indexation of prices is higher.

Finally, turning to the monetary policy reaction function parameters, the mean
of the long-run reaction coefficient to inflation is estimated to be relatively high
(2.03 in the DSGE and 1.77 in the DSGE–VAR). There is a considerable degree of
interest rate smoothing as the mean of the coefficient on the lagged interest rate is
estimated to be 0.82. Policy does not appear to react very strongly to the output
gap level (0.09), but does respond strongly to changes in the output–gap (0.22) in
the short run.

The resulting IRF’s indicate some significant deviations between the DSGE model
and the more data–driven DSGE–VAR approach. Figure 1 show one interesting
dimension on which the standard REE–DSGE tend to be misspecified if we accept
the DSGE–VAR model as the benchmark. Following a monetary shock, the REE–
DSGE model predicts a relatively quick response of inflation with a peak response
within the year following the shock. The timing of the peak effect is very similar
to the one of output. In the DSGE–VAR model, inflation typically responds more
gradually with only a very weak, if any, response in the first quarters, followed by
a more persistent decline in inflation afterwards. This type of inflation response
is more standard for many of the SVAR experiments. This gradual and persistent
reaction of inflation following a monetary shock contrasts with the immediate and
very short–lived effect of the productivity shock on inflation. This contrasting
reaction of inflation present in the DSGE–VAR responses is of course quite difficult
to achieve in the DSGE model with rational expectations. They will serve as the
benchmark when discussing the estimation results for the models with learning.

{Insert Figure 1}

3 Learning setup

3.1 Updating of beliefs

We implement the adaptive learning within the DYNARE 3.64 MATLAB toolbox
which is used to estimate and simulate DSGE models. Our model is driven by the
exogenous driving processes xt,

xt = ρxt�1 + εt + θεt�1.
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Including the innovation εt into the vector of exogenous processes wt = (xT
t , εT

t )
T,

the result could be written as AR(1) process

wt = Γwt�1 +Πεt. (29)

DYNARE represents our model in the following way:

A0

�
yt�1
wt�1

�
+ A1

�
yt
wt

�
+ A2Etyt+1 + B0εt = 0, (30)

where the vector yt includes endogenous variables of the model.1 The solution of
the model is provided by DYNARE as�

yt
wt

�
= T

�
yt�1
wt�1

�
+ Rεt. (31)

The equations (29) form part of the system (31). The solution (31) notationally
differs from the Minimum State Variable (MSV) solution, which for a system con-
sisting of (30) and (29) is usually written as

yt = a+ byt�1 + cwt.

The vector y contains a subset of state variables ys and variables that appear with
a lead in the model, y f .2 Deviating from the rational equilibrium (RE) assumption
and following the Marcet and Sargent (1989) and Evans and Honkapohja (2001),
we assume that the agents forecast future values of the lead variables using a
linear function of the states and exogenous driving processes,

y f
t = αt�1 + βT

t�1

�
ys

t�1
wt

�
, (32)

where βT
t�1 does not necessarily coincide with the REE reduced form coefficients b

and c, but the functional form of the relationship between y f
t , ys

t�1, and wt exactly
corresponds to the MSV REE reduced form.3,4 Finally, the agents’ beliefs about
reduced form coefficients α and β are updated using a constant–gain variant of

1DYNARE variable jacobia_ contains the matrix
�
A0 A1 A2 B

�
.

2y f and ys could intersect.
3In the adaptive learning literature, this equation is called the Perceived Law of Motion (PLM).
4This type of learning, promoted by Evans and Honkapohja (2001), is called Euler equation learn-

ing: the agents forecast only immediate future variables which are typically present in Euler equa-
tions of firms and/or consumers. An alternative description of learning — long–horizon learning
— has been promoted recently by Bruce Preston: he considers agents forecasting economic vari-
ables (present in their budget constraint and exogenous to their decision–making) infinitely many
periods ahead.

For a theoretical discussion on these two approaches to adaptive learning, see Preston (2005)
and Honkapohja et al. (2002). For a discussion of effects of the learning type on the behavior of
estimated DSGE model, see Milani (2006) and references therein.
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the Recursive Least Squares (RLS). In our model, there are 12 forward–looking
variables, 11 endogenous state variables, and 9 exogenous stochastic processes
(with 2 moving average terms counted as exogenous processes). Therefore, αt�1
is a 12 � 1 vector, while βt�1 is a 20 � 12 matrix. Every period, the agents are
updating their beliefs in a constant gain RLS step:

φt = φt�1 + gR�1
t Zt�1(y

f
t � φT

t�1Zt�1)
T, (33a)

Rt = Rt�1 + g(Zt�1ZT
t�1 � Rt�1). (33b)

Here we denoted the data vector that the agents use in their regressions as Zt =�
1,
�
ys

t�1
�T , wT

t

�T
, and collected the beliefs into a single matrix φT =

�
α, βT

�
.5

3.2 Initial Beliefs

Equations (33) allow us to track the agents beliefs over time, if both the data and
the initial beliefs are known. As it turns out that the results are very sensitive to
the initial beliefs, we will describe their selection in detail. We distinguish 4 ways
of determining the initial beliefs: three that are consistent with some REE, and one
that is based on regression estimates of the pre–sample data.

Any REE, given for example by (31), implies an equilibrium relation between the
forward–looking variables y f

t and the vector Zt. This relation is given by

E
h

ZtZT
t

i�1
� E
h
y f

t ZT
t

i
,

where the expectations E[] are also derived using the distribution implied by the
REE solution (see Del Negro et al 2007)). This relation is used to initialise φ0. We
take E

�
ZtZT

t
�

as initial condition for the second moments matrix R0. One could
select the initial beliefs to always correspond to the REE which is implied by the
estimated parameter vector. We think that this way is the closest to the pure ra-
tional expectations, as the only source of differences with the REE is related to
the temporary deviations of beliefs from their REE values caused by in–sample
data fluctuations and the related stochasticity of the constant gain learning. The
second REE–consistent way of selecting the initial beliefs makes them consistent
with some REE, not necessarily the REE that corresponds to the optimized para-
meter vector. Another difference between the two methods is that in the first one,
initial beliefs always correspond to the current parameters, while in the second
they remain fixed during the optimization step. Finally, similarly to Milani (2005),
we could optimize the initial beliefs, together with other parameters of the model.
This is the third way of generating the initial beliefs.6

5We discuss whether the constant should be present in Zt and φ below.
6The difference between the second and the third way is that the REE in the 2nd way is based
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Regression–based initial beliefs, our fourth initialisation approach, are obtained by
running a regression of y f

t on Zt using pre–sample data. Usually, we pick the point
estimate rather than a random point from the distribution of regression estimates,
as proposed by Giannitsarou and Carseles–Poveda (forthcoming).

In all estimations reported, we assume that the agents know both the law of mo-
tion (29) of the exogenous driving processes and the standard deviations of the
innovations εt.7 This is a standard assumption in the learning literature. An al-
ternative approach is to estimate exogenous processes separately and then use the
current beliefs about (29) in the updating step (33). We do not pursue this route
here.

3.3 Beliefs and likelihood construction

In contrast to low–dimensional models studied by Milani (2005), Sargent, Williams,
and Zha (2006), or Vilagi (2007), our set–up exhibits a clear distinction between the
endogenous model variables and the observable variables which are used to esti-
mate the model. All variables in the MSV REE solution are model variables which
are not, in fact, observed. Therefore, we use output from the Kalman filter used
to construct the likelihood function for a particular combination of parameters on
both sides of the updating equation (33).8

All endogenous model variables have zero means. Therefore, the MSV solution
does not include the constant. Our baseline estimations take this into account
and use eZt =

��
ys

t�1
�T , wT

t

�T
as the data vector. However, if we assume that

the agents are also (implicitly) learning the values of the growth rates or inflation
target, we include the constant into (33). In addition, we also report the results
of estimations where the agents are using PLM which does not coincide with the

on the data. We estimate the model under RE for a pre–sample time period to generate the REE
which is then used to form the initial beliefs used in the second method.

In contrast, the third way of forming initial beliefs is based on in–sample optimization of both
initial beliefs and the parameter values. Given the large dimensionality of our beliefs matrix (12�
21 for beliefs about reduced form parameters alone, plus beliefs about initial R which is a 21� 21
symmetric positively definite matrix), we form an auxilliary model which is exactly the same as
the estimated one but for parameter values; the parameter values of the auxilliary model are then
estimated together with the the main model parameters. The REE implied by the auxilliary model
is then used to construct the initial beliefs.

7In the third way of selecting the initial beliefs, this means that the auxilliary model shares with
the main model the parameter values related to the exogenous processes.

8In terms of Hamilton (1994), we use bys
t�1jt�1 and bwtjt on the right and by f

tjt on the left. In princi-
ple, as time t progresses, the agents could revise their past filtered estimates and thus adjust values
of φt used in the past. In other words, in every period the agents would use the smoothed esti-
mates of the model variables, and revise the whole sequence of beliefs held in past. This procedure
would make a better use of the available information; however, our current procedure uses only
filtered estimates.
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MSV solution. In particular, they might include observable non–zero mean vari-
ables into the PLM, in which case, inclusion of a constant into (33) is warranted as
well.

Given current beliefs, it is possible to derive the value of Ety
f
t+1 as a function of a

constant, yt, and wt. One can then solve equation (30) for
�
yT

t , wT
t
�T and derive a

time–varying VAR representation of the model:�
yt
wt

�
= µt + Tt

�
yt�1
wt�1

�
+ Rtεt.

The values of µt, Tt, and Rt are then used to form expectations of the next period
model variables in the Kalman filter. Thus, the estimation of a DSGE model un-
der adaptive learning reduces to calculating a time–varying law of motion for the
model and plugging it into the Kalman filter step, leaving the rest of the DYNARE
toolbox largely untouched.

The learning set–up just described allows an easy introduction of non–MSV learn-
ing. For example, we could allow our agents to forecast values of y f

t+1 using only
observable variables, yobs

t , or their model counterparts. Some of these variables
are not in the state vector9. Given that DYNARE provides equations (31) and (30)
using the whole vector y, not just its state subset, derivation of µt, Tt, and Rt does
not depend on using MSV or non–MSV solution. In the rest of the paper, we refer
to this type of learning with misspecified beliefs as the VAR learning case.

3.4 Projection facility and computational issues

The procedure just described makes Tt a complicated function of the data, cur-
rent parameters, and beliefs. There is nothing preventing Tt from being explosive
(having one or several eigenvalues outside of a unit circle) for one or several pe-
riods. Often cited motivation for the adaptive learning is an attempt to describe
the real world behavior of the agents; in practice, forecasters do not use explosive
models. The simplest method of dealing with explosive behavior of Tt is to ignore
the updating step which has resulted in undesirable roots, and use previous µt,
Tt, and Rt instead. This mechanism is very similar to the theoretical construct of
a projection facility described in Evans and Honakpohja (2001) which was used,
for example, by Orphanides & Williams (2007).10 We have to note, however, that

9The observable variables include first differences of consumption, output, investment, real
wages, and levels of inflation, interest rates, and hours worked. These variables (together with a
constant) could be used to construct the PLM, but none of them is in the state vector. Alternatively,
we report estimations where we used model–based consumption, output, investment, real wages,
inflation, interest rates, and hours worked in the PLM instead. In this set, hours are not in the state
vector.

10Usage of projection facility amounts to restricting beliefs φ to a small neighborhood of their
REE values. Discarding explosive Tt is equivalent to imposing a restriction on a highly non–linear
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thus implemented projection facility results in discontinuous jumps in the likeli-
hood function: even for two very close parameter vectors the likelihood function
could differ significantly if one results in a sequence of fTtgN

t=1 which is never ex-
plosive, while the other generates a sequense with at least one t such that Tt is
explosive. Such a non–continuous likelihood function results in significant com-
putational difficulties which are described later. Moreover, such discontinuities
arise also in the case when the projection facility is not implemented: allowing Tt
to be explosive even for very few periods leads to sharp deterioration in precision
of predicting the future values of y f , and thus to a much worse likelihood.

Another issue related to using the updating equation (33) is sensitivity to the value
of “effective gain”, given as gR�1

t . Even if the gain parameter g is small, the beliefs
φ might be very sensitive to the data if the matrix R is “small” in the sense that
its smallest eigenvalues are very close to zero. If this is the case, instances of Zt
which are not orthogonal to the eigenvectors of R corresponding to the smallest
eigenvalues would lead to very large changes of beliefs φ. This extreme sensitivity
of the beliefs on the data leads to further complications in the likelihood function,
as close parameter vectors might result in a very different behavior of fTtgN

t=1 .
We discuss observable consequences of this sensitivity in later sections; in order
to mitigate somewhat the negative effect of it on the likelihood function, we use
Ridge correction mechanism.11

As demonstrated by McCallum (2006), for models with time t information avail-
able (time–t dating of Evans and Honlapohja 2001), determinacy is a sufficient
condition for E–stability (of the MSV solution). Moreover, if more than one so-
lution is stable, then the unique solution derived using decreasing order of the
system eigenvalues, is E–stable. Our model belong to the class considered by
McCallum (2006), DYNARE uses the solution which corresponds to eigenvalues
ordered in the decreasing order, and the points in the parameter space which re-
sult in indeterminate equilibria are heavily penalized by adding a large constant
to the likelihood function (and thus cannot be a result of the optimization). Thus,
we are guaranteed that the MSV solution is always stable. Note, however, that the
result does not necessarily hold if the agents are using non–MSV PLM. Stability
conditions in this case have to be checked numerically for every constellation of
parameter values.

function of φ instead.
Here, we cannot impose restrictions on φ directly, because when y f and ys include different

variables, the forecasting rule is not a simple VAR. To transform the rule into VAR, one needs
information contained in the REE, specifically, the matrix T.

11If at time t the smallest eigenvalue of Rt is less than some small λ, (R+ λI)�1 is used instead
of R�1 in the equation (33a). Here I is the identity matrix. In our estimations, λ is usually set to
1 � 10�5.
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4 Simulation exercises

4.1 Simulated second moments

Before moving to the estimation of the models under learning, we illustrate the
potential role of learning in these medium–scale DSGE models through a set of
simulation experiments. We generate random data from the model under RE and
under different learning setups and compare the properties of the simulated data
to understand the impact of learning. Furthermore, we also consider the influ-
ence of the learning mechanism on the impulse response functions of some of the
stochastic shocks.

Four different assumptions about the learning process are evaluated in these sim-
ulation experiments:

1. the RE model as the benchmark model;

2. MSV–learning with perfect information about the constants;

3. MSV–learning where agents learn the constants as well; and

4. VAR–learning with beliefs about observed variables and a constant only.

In all these experiments the structural parameters of the model, including para-
meters of the exogenous stochastic processes, remain constant and equal to the
mode of the estimated RE model. For each learning mechanism, we consider dif-
ferent values of the gain parameters (0.01, 0.02 and 0.05) corresponding roughly
to a regression with forgetting half–length of 69, 34 and 14 periods.12 In order to
understand the influence of the initial beliefs on the simulation outcomes, we run
1000 simulations for each model; each simulations starts from a different initial
PLM (initial beliefs).13 Each simulation run is 1000 periods long. We report the
mean statistics for the first 150 observations and the last 150 observations in order
to distinguish the learning dynamics during the “transition” period, directly de-
pendent on the specific initialisation of the beliefs, from the dynamics due to the
“permanent” time–variation generated by the learning process14. In all these sim-
ulations, we impose a projection facility which implies that the belief coefficients
are not updated if the model dynamics become explosive under the new beliefs.
Observations that push the eigenvalues of the system above one are therefore dis-
regarded in the learning process. As is often observed in simulated data under

12For a constant gain learning with the gain parameter g, weight of a data point t periods ago is
given as g (1� g)t . This weight decreases by 50% in T = � ln 2

ln(1�g) �
0.69

g periods.
13We draw 1000 parameter vectors from the posterior distribution of the model estimated under

RE, and use the resulting REE to construct initial beliefs.
14Statistics based on the simulation of one long sample are close to the permanent statistics

reported for the permanent dynamics here.
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adaptive learning, occasionally time series can deviate from their long–run aver-
ages to a significant degree. In section 4.3, we discuss the impact of these events
or ’exits’ on the simulation results.

In Table 2, we summarise the simulation outcomes for the volatility and persis-
tence of the generated data. The first two columns describe the output for the RE
model. We present standard deviations for both the growth rate and level of the
variables as well as autocorrelations in the simulated time series for the observed
variables. Note that the volatility for the variables in levels are systematically
lower during the transition period because the state variables are initialised at
their their steady state values.

{Insert Table 2}

The outcomes for the MSV–learning model (with or without a constant) and with
a small (0.01) gain parameter remain almost identical to the outcomes under RE.
The additional variation that is related to the beliefs update does not significantly
increase the volatility or the persistence of the observable variables. This is espe-
cially true for the permanent dynamics. For the transition dynamics, there are
very small changes: the standard deviation and the correlations tend to be smaller
during the transition period for the model with learning. For this small gain para-
meter, it makes no difference whether the constant is included in the belief regres-
sions or not.

For higher values of the gain parameter, the standard deviation and the corre-
lation of the simulated variables start to increase. This tendency is still moderate
during the transition period, where the influence of the initial beliefs and the initial
state vector remains very strong, but it becomes very pronounced for the perma-
nent dynamics. The increase is stronger in the case where agents are also learning
about the constants in the model. These effects remain rather moderate for a gain
of 0.02 (half forgetting in 8.5 years) but become very large if the gain parameter
is further increased to 0.05 (only 3.5 years to halve the weight of data point in a
regression). In relative terms, it is the volatilities of the inflation and the interest
rate that experience the strongest increase. In the simulations with a higher gain,
the percentages of observations that are disregarded by the projection facility in-
creases quickly: while only 0.04% (0.05% for the model with a constant) of the
observations are disregarded for a gain of 0.01, this percentage increases to 0.37%
(0.69%) for a gain of 0.02 and 13.8% (24.14%) for a gain of 0.05. With a higher gain,
the roots of the model are more frequently approaching one, which also explains
why the standard deviations for the level variables tend to grow quickly in these
cases. An additional source of increased variability for larger gains is the so–called
‘exits’ (see section 4.3).

Turning to the VAR–learning model, we observe significant deviations even for
a small gain of 0.01. During the transition period, the standard deviations for
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most of the variables increase, although for the permanent dynamics some of the
standard deviations tend to decline. The persistence in the series increases consid-
erably (with the exceptions of the wage changes). With higher gain, all standard
deviations and correlations tend to increase and this increase is more pronounced
than under the MSV beliefs, reflecting again the fact that the unit root and the
projection facility are more frequently hit under VAR learning. The percentage of
observations with the projection facility increases from 0.19% for a gain of 0.01 to
3.21% as gain increases to 0.02 to 23.88% when the gain equals 0.05.

In Figure 2a and 2b, the typical behaviour of the simulated series are illustrated
under different learning assumptions. The two variables shown are the output
growth rate and the inflation rate. The MSV–learning model with a small gain
produces the standard stationary series. As the gain increases to 0.05, in addition
to the extra volatility referred to above, we observe occasional large jumps which
quickly revert towards neighborhood of the mean value. These jumps are the ‘ex-
its’ which will be discussed later. As Figure 2b makes clear, under VAR–learning
the exits could already be observed for a much smaller gain of 0.02.

{Insert Figure 2a and 2b}

4.2 Impulse responses with simulated beliefs

The impact of learning, and especially the role of the initial beliefs, on the model
dynamics can also be illustrated by looking at the impulse response functions.
Figure 3a and 3b show the IRF of a monetary policy shock and of a productivity
shock on output and inflation. The graph contains the mode and the deciles of the
distribution of the IRF function evaluated at the start of the simulation where the
beliefs are initialised through random draws from the posterior distribution of the
RE model.15 These graphs, therefore, show the impact of imposing different ini-
tial beliefs on the model keeping everything else constant. When learning is based
on the MSV solution, pseudo–impulse responses are located very close to the IRF
of the RE model. IRFs for a monetary policy shock converge very fast, which is
not surprising given the very low estimated persistence of the monetary policy
shock and tendency of the constant gain learning to “forget” past data. Similarly
to Williams (2003), we observe very little effect of MSV–learning with “realisti-
cally” distributed initial beliefs on the impulse responses or second moments of
the simulated time series.

{Insert Figure 3a and 3b}

15The graph contains pseudo impulse responses as in Williams (2003): given initial beliefs, a one
standard deviation shock is introduced, and behavior of the model is then traced while the beliefs
themselves change.
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The impulse responses under the VAR beliefs differ considerably more from the
IRFs under RE, and the decile dispersion is also wider under VAR beliefs than
under MSV beliefs. As in the MSV–learning case, decile dispersion for impulse
responses to the monetary policy shock decreases faster than for the productivity
shock. Under VAR learning, the agents’ Perceived Law of Motion (and therefore,
their expectations) differs substantially from the RE reduced form, which explains
this discrepancy.

To better understand the reason VAR–learning generates second moments and
IRFs that are significantly different from those under RE, we can look at the agents’
expectations of future variables. In a linearised model these expectations are lin-
ear functions of past values of the state variables. Under rational expectations,
coefficients of these linear functions are fixed; adaptive learning allows them to
vary with time. Agents use the PLM to form expectations of the future variables.
In Figures 4, we plot one–step ahead expectations for the RE model and the three
learning specifications used in this section. The expectations are taken from one
simulation run, choosen randomly out of the 1000 generated as described above.
As is obvious from Figure 4, the differential effect of MSV– and VAR–learning
comes mainly from the way these types of learning affect expectations. Under the
MSV learning, impulse responses of both actual and expected inflation are very
close to those under the RE; the same result holds for other model variables.16 In
contrast, with VAR learning, the dynamics in the inflation expectations react dif-
ferently. For a monetay policy shock, inflation expectations are affected much less
initially, but the effect is longer lived17. The reason is that the RE–model consis-
tent beliefs under VAR learning imply that the agents assume the inflation process
to be much more persistent than under the RE: coefficient on past inflation in the
inflation forecasting equation is close to 0.8 rather than 0.2 for the REE. The re-
sulting persistence in the realised inflation under VAR learning is higher than in
the RE case. This higher persistence under VAR learning might substitute for the
structural frictions in the model.

{Insert Figure 4}

The impact of subsequent learning on these IR is very minor: for the MSV learning
and the gain values we considered, a one–standard error shock does not generate
any significant change in the beliefs. With VAR–learning and gains of 0.02 or 0.05
there is already a noticeable impact on the impulse responses; again, we attribute
the difference to the different information content of agents’ PLM under these two
learning types, and correspondingly different expectations. An additional source

16The impulse responses under MSV learning differ from those under the RE because we used
a random draw from the posterior distribution to construct agents’ beliefs in the learning model.

17The same dynamic profile applies for the productivity shock but the overall effect on inflation
is reinforced.
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of the difference is related to the fact that the RE model–based beliefs under VAR–
learning, in fact, are not correct even on average: equilibrium beliefs are given by
the Restrictive Perceptions Equilibrium (RPE) discussed in section 6. Therefore,
a temporary effect related to the evolution of the beliefs from their REE–based
values towards RPE values may play a role, especially for relatively large gains.
The temporary effect is illustrated in the Figure 5, where we track behavior of the
inflation–on–inflation belief coefficient during a simulation run with gain equal
to 0.01. With MSV learning, this coefficient (and others) does not deviate much
from its REE value; in contrast, the evolution from the RE–model consistent beliefs
towards the RPE values is apparent under the VAR learning. In addition, the
beliefs are more volatile with VAR learning.

{Insert Figure 5}

4.3 Simulations and large deviations

As mentioned previously, occasionally a simulated time series exhibits a very large
deviation from its long–run average, which is typically reversed after a small num-
ber of periods. Such behavior was also observed in simulated data under learning
by Orphanides and Williams (2007) and Giannitsarou (2007).

We believe that such events could be described as exits or ‘large deviations’. If
the dynamics under learning is stable (E–stability of the equilibrium is a neces-
sary condition for stability of the learning dynamics), on average, beliefs should
equal their equilibrium values; they cannot deviate too far from the equilibrium
for long periods of time. However, constant gain (perpetual) learning introduces
permanent stochasticity into the model, as beliefs can never be exactly equal to
their equilibrium values.

Suppose that a sequence of shocks hits a simulated model in such a way that the
beliefs move in (approximately) the same direction period after period and leave
some neighborhood of the equilibrium beliefs. Agents’ expectations will shift as
a result, which might also be manifested in observed variables moving far from
their equilibrium values. Clearly, such a situation cannot continue indefinitely:
observing such sequence of shocks is unlikely. Theory of large deviations [Dembo
and Zetouni (1998), Freidlin and Wentsel (1998)] studies properties of such ‘rare
events’; their probabilities “have asymptotics of the form exp

�
�Cε�2	 as ε ! 0

(rough asymptotics, i.e., not up to equivalence but logarithmic equivalence)”, see
Freidlin and Wentsel (1998). For an application of the large deviations theory to
models of adaptive learning with constant gain see Cho, Williams, and Sargent
(2002) and Kolyuzhnov, Bogomolova, and Slobodyan (2006), among others.

One of the basic predictions of the large deviations theory is that if the system is
started near the equilibrium point, number of periods necessary to observe the
first crossing of the boundary of a given neighborhood of the equilibrium (called
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first exit time τ) is distributed exponentially. As a result, probability of the first
exit happening after N periods is given as

Pr(τ � N) � e�λN.

Therefore, a very simple check to see if the extreme events in the simulation could
be ‘rare’ large deviations is to plot the logarithm of empirical probability that the
first escape time is greater than N (logarithm of the share of simulation runs that
escaped after N) versus N. In this coordinates one should see a downward slop-
ing straight line. Figure 6 illustrates this hypothesis based on simulation results
from a MSV–learning model with a constant and a gain of 0.03. A large devia-
tion is defined as a realisation where a state vector variable takes on a value that
exceeds four times the standard deviations (observed in the REE) away from the
steady state. The results show that indeed, we do observe the straight line for a
large range of N. The fit is especially good if we exclude simulation runs where
projection facility was used too often.18 Theoretical calculation of the parameter
of exponential distribution η is a very complicated procedure that will not be at-
tempted in this paper. Similar results are obtained for the VAR–learning model
with a constant, if the model is started at the Restricted Perceptions Equilibrium
(RPE) beliefs; for a discussion of the RPE under VAR–learning, see section 6.

{Insert Figure 6}

The exits influence measured standard deviations and autocorrelation of the sim-
ulated time series, as is illustrated in Tabel 3. For example, output growth simu-
lated under MSV learning with gain equal to 0.02 has ‘transitional’ standard de-
viation of 0.941 and the ‘permanent’ one equal to 0.962; when runs with exits are
removed, these numbers reduce to 0.938 and 0.946, respectively. Effect of exits
on autocorrelations of the simulated data is minor. Exits have larger effect on the
‘permanent’ standard deviations; as a result, after taking them into account, the
difference between ‘transitional’ and ‘permanent’ numbers becomes smaller for
all the simulated variables. We believe this is due to the fact that even if state vari-
ables (approximately) revert back to their sample averages after an exit, the beliefs
do not necessarily do so, and the dynamics after the exit is, in fact, different than
the one before it. Eliminating simulated runs with exits reduces this effect.

For simulated time series under VAR learning with gain of 0.02, excluding ex-
its does not lead to convergence of measured standard deviations for the ‘transi-
tional’ and ‘permanent’ dynamics; the opposite effect is often observed. In addi-
tion, measured autocorrelations often reduce after the exited runs are removed.
We attribute this behavior to the fact that RE model–based beliefs do not consti-
tute an equilibrium for the VAR–learning; therefore, when the gain is sufficiently
large, ‘transitional’ and ‘permanent’ dynamics are, in fact, different, as the beliefs
drift towards their RPE values.

18Using projection facility changes dynamics of the model. Therefore, if it is used too often, we
deal with a significantly different system; such runs cannot be compared directly to the runs where
projection facility was used seldom, if at all.
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{Insert Table 3}

5 Estimation under MSV learning

In this section, we present the estimation results for the case of MSV–learning,
when the agents use the correct reduced form of the model to form expectations
about future variables but have to learn the exact values of the parameters. We use
constant gain (perpetual) Least Squares learning and estimate the gain parameter
jointly with the rest of the model parameters. We distinguish between the case
where agents have full information about the constants — parameters that de-
termine the steady state deterministic growth rate, inflation rate and real interest
rate, and the case where they also have to learn about these constants. In practice,
this means that we consider belief regression with and without a constant term. In
order to illustrate the sensitivity of the results to the assumptions about the initial
beliefs, we consider the four alternative setups described in detail in section (??).

In all these cases, the priors on the parameters are the same as in the REE model.
As we also estimate the gain coefficient, there is one additional prior: a Gamma
distribution with mean 0.035 and standard deviation 0.03. This implies that the
prior mode for the gain is slightly less than 0.01, but the prior is quite uninforma-
tive so that the gain parameter can take on higher and lower values as well.

5.1 MSV learning with a model–consistent initialisation of be-
liefs

In this learning specification the forecasting equations use the complete set of vari-
ables that make up the MSV solution of the model under RE, and the initial beliefs
are consistent with the REE of the estimated model. The estimation results are
reported in Table 4 and are very similar to the results for the REE model in Table
1. Both the posterior distribution of the parameters and the marginal likelihood of
the model are extremely close to the REE estimates.

{Insert Table 4}

This similarity is not really surprising for two main reasons. First, the initial beliefs
are consistent with the REE implied by the estimated model. And second, the
information available to the agents for updating of the belief parameters comes
close to the information available to the rational agents. Every period the agents
use currently best (filtered) estimates of all the variables appearing in the MSV
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solution; they also are assumed to know the parameters of the exogenous shock
processes. The belief coefficients are updated by regressing the forward variables
up to time t on the best estimates for the exogenous processes for time t and on
the best estimates of the lagged values of the endogenous state variables. But
given that the REE model does very well in fitting the data, without any strong
evidence of instability over sub–samples and without any remaining correlation
in the estimated innovations, there is no reason for the model under learning to
deviate systematically from the belief parameters implied by the REE model. As
a result, the time variation in the beliefs from which the learning model could
benefit is negligible in this setup. Consistent with the above observations, the
gain parameter is estimated rather imprecisely: the 10% and 90% bounds of the
posterior distribution for the gain are 0.0 and 0.034 with the mean around 0.018.

As can be seen from Table 4, inclusion of a constant in the belief equations, which
reflects alternative assumption on the agents’ knowledge about the model con-
stants, does not matter in this setup. The estimated parameters and the marginal
likelihood are insensitive to the presence of a constant in the belief equations.

The marginal likelihoods of the learning and RE models are very similar, mean-
ing that the data is not able to distinguish between the two models19. Comparing
marginal likelihoods across models is complicated and can be very sensitive to the
way the priors are defined (see Del Negro and Schorfheide 2006). In this applica-
tion, the close similarity between the RE and the learning model allows us to con-
clude that their relative posterior probability is very close to the prior probability.
This marginal likelihood will serve as the benchmark to evaluate the alternative
specifications of the learning process.

5.2 MSV learning with optimised initial beliefs

Our second specification of the learning process derives the initial beliefs from
a REE of a model which is not necessary the same as the model estimated in–
sample. These initial beliefs are chosen to optimise the in–sample fit of the model
with learning. As described previously, we estimate two models simultaneously:
the ‘initial belief’ model is used only to construct the initial beliefs, and the ‘real’
model is utilised to evaluate the data. Consistent with the hypothesis, retained
in all our learning models, that economic agents know the parameters of the ex-
ogenous stochastic processes that drive the economy, we estimate only the behav-
ioural parameters of the initial belief model and impose the same stochastic para-
meters in both models. We derive the initial beliefs from an alternative structural
model in order to save on the number of estimated parameters.

19The mode of the posterior distribution under learning is significantly higher than the one un-
der the RE, but this is mainly due to the fact that there is an additional parameter, the learning
gain, in the parameter set of the learning model.
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{Insert Table 5}

As one could expect, the model with optimised initial beliefs outperforms all other
MSV–learning models and the RE model in terms of marginal likelihood20. Note
that this difference in the marginal likelihood is much smaller than the differ-
ence between the posterior modes of these models. The likelihood function of the
model with optimised initial beliefs is characterised by an irregular surface that
creates severe computational problems : the surface is extremely steep in many
directions and the optimisation process gets easily stuck at some local optimum.
In addition, the MCMC sampling converges very slowly. The relatively high value
of the gain, which is estimated at 0.017 with a posterior sitribution that varies be-
tween 0.006 and 0.021, is the prime source of these complications. A high gain
implies that the coefficients of the forecasting equations are very volatile. Small
changes in the parameters of the model can result in large deviations in the up-
dated beliefs, which can lead to extreme consequences for the likelihood. To il-
lustrate the role of the high gain, we considered the same model with the gain
fixed at a small value of 0.002. Most of the computational problems disappear in
this case. Fixing the gain has no cost in terms of marginal likelihood, although
the posterior mode of this model is considerably lower than for the one with the
estimated gain. This result suggests that the benefit in terms of the marginal like-
lihood and the additional explanatory power are mainly derived from the specific
initial beliefs (which differ from the REE), and not from the time variation induced
by adaptive learning.

Turning attention to the estimated parameters we can say that the interest elas-
ticity of investment is high (investment adjustment cost is low), risk aversion σc
is low but the habit persistence coefficient η is relatively high. At the same time,
the investment shock is more volatile and less persistent, while the price mark–up
shock is estimated to be very persistent. Comparing the estimated parameters in
the ‘initial belief’ and the ‘real’ models, we note that the price and wage stickiness
and the price indexation coefficients are all lower in the ‘real’ model than in the
model estimated under RE, while the opposite holds for price stickiness and in-
dexation in the ‘initial belief’ model. Monetary policy rule in the ‘real’ model is
characterised by a stronger reaction to the inflation, output gap, and past interest
rate (interest rate smoothing) than in the ‘initial belief’ one.

The implications of the estimated parameters and beliefs for the IRF of the pro-
ductivity and monetary policy shock are illustrated in Figure 7. At the start of the
sample, IRFs correspond to the estimated initial beliefs. The time-variation in the
IRFs is driven by the updating of the beliefs. For comparison, the constant IRFs of
the RE model are plotted on the same graph as a thick black line.

20This marginal likelihood is calculated conditional on the estimated beliefs: during the MCMC
sampling process, we keep the initial beliefs fixed at the estimated mode. We use this procedure to
make the marginal likelihood of this model directly comparable to the other models estimated in
this paper.
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{Insert Figure 7}

Although there are large changes in the underlying individual belief coefficients,
the IRFs are relatively stable over time. For both shocks, the impact on output is
in general similar to that under the RE. However, while for productivity the im-
pact is declining slightly over time, the effect of the monetary policy shock tends
to increase as time progresses. The effect of the productivity shock on inflation
is more time–varying. The impact effect on inflation is similar to that in the RE
model, but it disappears faster in the learning model than in the RE model. Ex-
actly the opposite holds for the monetary policy shock on inflation: in the learning
model, inflation tends to react more gradually, with the peak effect arriving sev-
eral quarters later than in the RE model. This difference in the inflation response
is especially striking at the end of the sample, where contemporaneous reaction of
inflation is almost zero and the peak effect occurs more than one year later (and
definitely after the peak response in output)21.

Note that this more gradual response of inflation to the monetary shock is not in-
duced by the structural parameters that influence the inflation dynamics: relative
to the model estimated under RE, the price and wage stickiness is lower while the
indexation parameters are the same in the ‘real’ model with learning. On the other
hand, the ‘initial belief’ model is characterised by higher stickiness and higher in-
dexation. But it is mainly the updating of these beliefs over time that enforces the
gradual reaction of inflation to the policy shocks. This is remarkable given that
the monetary policy shock is assumed to be known by the agents and appear ex-
plicitly in their belief equations under MSV learning. It is also very interesting
to see how the beliefs tend to postpone the reaction of inflation to the monetary
policy shock while they lower the persistence in the inflation reaction following
the productivity shock.

Milani (2006) finds that the structural inertia in his model is systematically re-
duced when learning is introduced. We can only partially confirm his results: the
estimated price and wage stickiness and the adjustment cost of investment are all
lower under MSV–learning with optimised initial beliefs model, the indexation
parameters are more or less unchanged and only the habit persistence coefficient
is larger with adaptive learning. The persistence of the exogenous shocks stays
also largely the same with the exception of the persistence of the investment shock
which becomes much lower.

5.3 MSV beliefs with presample model initialisation

An alternative way to derive the initial coefficients of the MSV beliefs is to estimate
a REE model over a sample that preceedes the actual estimation period. Therefore,

21The impact of the optimised beliefs under MSV learning are much stronger than the one dis-
cussed in the simulation session (see Figure 3a), where the beliefs were drawn from the posterior
distribution of the RE model. The estimated "initial belief" parameters deviate indeed considerable
from the RE model.
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we estimated a RE model over the pre–sample period (1948:2-1964:4), and used
the moment matrices implied by the resulting REE to fix the initial beliefs for the
estimation of the MSV–learning model over the sample (1966:1-2005:4).

Restricting the initial beliefs to be consistent with the pre–sample REE reduces the
estimated marginal likelihood relative to our benchmark case with in–sample REE
consistent beliefs (see Table 6). The estimated gain is quite high with a mode at
0.024. As explained in section 5.2, such a high gain generates a complex likelihood
function that leads to severe computational problems. The posterior mode of this
model is higher than in the benchmark case, suggesting that the pre–sample REE
contains some potentially useful information about the in–sample initial beliefs.
This information is however very sensitive to specific parameter constellations
and this parameter uncertainty reduces the marginal likelihood.22

{Insert Table 6}

In Figure 8 we plot the time–varying IRFs for the productivity and the monetary
shock. Note the following features. First, the initial beliefs are somewhat out of
line with what the model prefers, resulting in large adjustments of the belief co-
efficients early in the sample; this results in significant time variation of the IRFs,
especially for inflation. The estimated pre–sample model differs in many direc-
tions from the in–sample one. For instance, the persistence of the price and wage
shocks is very different from that observed in other models, price stickiness is very
low and indexation modest. These features of the initial beliefs result in strong
reaction of inflation to the shocks in the beginning of the sample. Second, out-
put responds in this model stronger to the productivity shock than in the model
with optimised beliefs or RE model. Third, the reaction of inflation to productiv-
ity shocks increases over time, but contrary to the model with optimised beliefs
this responce gradually becomes more persistent and hump shaped. Fourth, the
maximum responce of both output and inflation to the monetary shock decreases
in magnitude over time, the impact effect also decreases, but the hump shaped
reaction increases over time. At the end of the sample the IRF tends to converge
towards the responses generated by the RE model rather than to these of the MSV–
learning model with optimised beliefs.

{Insert Figure 8}

22MSV–learning models tend to generate second moment matrices with tiny smallest eigen-
values, necessitating usage of the ridge correction mechanism. In such cases, beliefs are usually
strongly adjusted in the early in–sample periods, and overfitting of the initial data might become
an issue.
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5.4 MSV beliefs with presample regression initialisation

The fourth method of generating initial beliefs uses a least squares regression of
the forecasting equations using the pre–sample data. These regressions include a
set of unobserved variables that can only be produced by an estimated model. We
use the filtered series from the pre–sample RE model to generate the data needed
to run the regressions.

Under this approach, the initial beliefs are such that beliefs adjust even stronger
early in the sample than with the pre–sample REE model initialisation of section
5.3. Depending on the length of the pre–sample, the estimated gain parameter
is extremely high, varying between 0.04 to 0.06, and this leads again to various
computational difficulties. For example, optimisation routines are finding local
rather than global optima, MCMC do not converge or converge very slowly, and
the approximation of the marginal likelihood yields very low values relative to
the mode of the likelihood.

6 Estimation with VAR learning

Up to now we considered models in which private agents know the correct spec-
ification of the model, but learn about the values of the belief parameters. Here
we drop the assumption that private agents know the correct specification, and
instead assume that agents use only the limited list of variables in their belief
equations. We assume that agents use the same list of seven observable variables
as we do in our estimation of the overall model. This form of misspecified belief
equations is probably a more realistic approximation of the actual information set
available to economic agents. The potential implications of this misspecification
in the beliefs on the model dynamics and the implied model dynamics have been
discussed in the simulation exercises already. In order to form expectations about
the forward variables in the model, agents run regressions on the seven observed
variables and a constant. However, we assume that these regressions are specified
in levels and not in first differences, which imply that agents use the filtered values
for the level variables of the observables, while we use the first differences of four
of these variables in our measurement equations. In this section we only consider
applications in which the belief equations contain a constant, meaning that private
agents have to learn not only on the slope parameters of the belief regression but
also the levels which depend on the steady state inflation, growth and real interest
rate. We refer to this setup of the beliefs as VAR learning. Similarly to the case of
MSV learning, we also consider different ways of constructing the initial beliefs at
the start of sample.

VAR learning has several implications in the adaptive learning set–up. First, E–
stability of the equilibrium is not guaranteed any longer, as the result of MacCal-
lum applies only to the MSV case. However, for parameter values close to the
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REE, E–stability is obtained. Second, using a different information set for forming
forecasts may influence the equilibrium laws of motions themselves, and makes
the RE–model consistent beliefs different from those that would obtain on aver-
age in an infinitely long simulation. In the appendix, we provide a more detailed
discussion of these issues.

6.1 VAR learning with model consistent initial beliefs

Table 7 summarizes the estimated parameters, while Figure 9 shows the implied
IRF functions.

{Insert Table 7}

{Insert Figure 9}

First of all, VAR learning with with a model consistent initialisation of the beliefs
generates a marginal likelihood that is slightly higher than that for the benchmark
MSV learning and the REE model. However, contrary to the model with MSV
learning and model consistent initial beliefs, where the estimated learning gain
is quite high and estimated imprecisely, the estimated gain for the mis-specified
VAR beliefs is extremely small with a narrow posterior distribution. The other
estimated parameters remain very close to the ones in the benchmark and the
REE model. One exception is the very low degree of price indexation.

The small gain parameter implies that the IRFs remain stable over time. The out-
put reaction is relatively similar to the REE model. Relative to the MSV learning
case, the response of inflation to the productivity shock is further enhanced but
remains quite short–lived. For the monetary policy shock the reaction of inflation
is quite different: the overall response is small, and the impact effect is decreasing
over time while the persistence in the response is increasing over time. Both trends
are similar to those observed for MSV learning with optimised initial beliefs.

Numerical simulations of the E–stability ODE under VAR learning with constant
(derived in the Appendix) show that for parameter values close to the REE and
the initial beliefs close to the RE–model consistent ones, dynamics under learning
is expected to remain stable. However, divergence is often observed if the simu-
lations are started with beliefs about constants which are not equal to zero as in
the RE–model consistent case. Simulations show that beliefs about constants are
especially volatile. Therefore, if some data point makes the agents to assume a
particularly large constant value in some forecasting equations, further evolution
of the beliefs might become unstable. During the estimation procedure, such sit-
uations are most probably associated with very low likelihood values. The very
low value of the estimated gain guarantees that within the 160 periods (length of
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the sample used for estimation) beliefs about constants do not reach values which
are likely to trigger instability. An alternative explanation for the low estimated
gain is that the average evolution of beliefs from their RE–model consistent val-
ues towards the RPE values is inconsistent with the data in our sample; a low gain
then guarantees that the beliefs do not move in this undesirable direction too fast.

6.2 VAR learning with optimised initial beliefs

This specification of the learning process produces the best marginal likelihood
and outperforms substantially the REE model (See Table 8). The marginal likeli-
hood comes close to the values that are produced by the best fitting DSGE–VAR
model. The structural parameters of the model are again close to the REE model
and the benchmark learning model. The gain parameter is estimated to be very
small and varying between 0.001 and 0.003.

{Insert Table 8}

{Insert Figure 10}

The IRFs are again relatively stable and close to the ones of VAR learning with
model consistent beliefs.The inflation response to the monetary policy shock is
again interesting: while in the beginning of the sample the response is very close
to those of the REE model, the reaction gradually adjusts driven by the beliefs
updating and at the end of the sample the IRF becomes again much more gradual
and persistent.

The high marginal likelihood of this model delivers strong evidence in favour
of beliefs that deviate significantly from the rational expectations hypothesis of
model consistent expectations. The conclusion that the gain in the fit comes mainly
from the initial beliefs, is also confirmed by the marginal likelihood of this model
where the initial optimised beliefs are kept constant over the complete sample.
The small gain also suggests that the beliefs are not materially changed accord-
ing to the constant gain learning schedule. Therefore, it might be useful to test
whether alternative and more efficient learning procedures (such as Kalman filter)
are performing better in this context. However, one should note that the updating
is more important under the VAR beliefs than under the MSV beliefs even for very
low gain parameters, because the residuals in the forecasting equations are larger
and probably contain a more systematic component than under the MSV beliefs.
This conjecture is also confirmed by the important changes in the IRF of inflation
to the monetary shock. Although there is considerable updating in this model,
no computational problems were encountered, which is probably related to the
fact that the 2nd moments matrix doesn not have very small eigenvalues, and thusR�1

t

 is never too large .
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6.3 VAR learning with presample based initial beliefs

The VAR learning with initial beliefs derived from the RE model estimated using
the pre–sample data does a poor job in terms of marginal likelihood. As for the
model with MSV learning and pre–sample based beliefs, the learning gain is very
high (0.016 vs 0.001 for both RE–model consistent and optimised VAR beliefs) in
order to allow the beliefs to adjust and to move away from the imposed initial
beliefs.

{Insert Table 9}

{Insert Figure 11}

The IRF shows a reaction in output that is still in line with the other models, al-
though the impact of the monetary shock on output is very high in this model,
probably reflecting initially high belief coefficient on inflation in the output fore-
casting equation. The reaction of inflation fluctuates a lot over time. The response
of inflation to the productivity shock in the beginning of the sample is strongly
negative but at the end inflation does not seem to react at all on impact. The re-
action of inflation to the policy shock is already gradual in the beginning of the
sample and over time the impact effect becomes even positive, but with an ex-
tremely persistent negative effect after several quarters. This response is similar
to the often observed price puzzle in SVAR models. Again, we attribute this sig-
nificant time variation to the fast adjustment of beliefs from the values imposed by
the pre–sample RE model. We also checked whether the choice of the presample
period was responsable for the observed divergence between the initial beliefs and
the beliefs consistent with the in–sample data. If we use only data from 1955 up to
1965 to construct initial beliefs (instead of 1948-1965), the model fit improves. We
conclude that the data points before 1955 affected the data generating process in a
way that is at odds with the one that prevailed in later periods, at least under the
assumption that the agents are to include only the seven observable variables into
their forecasting equations.

7 Conclusions

The above results illustrate that several of the models with learning fit the data
equally well or even better than the RE model. The best performing learning mod-
els generate marginal likelihoods that come close to that of the optimal DSGE–
VAR model. Specific initial beliefs contribute significantly to this result, which
proves that the model–consistent expectation imposed by the rational expecta-
tions hypothesis is too restrictive. The best performing models are the ones where
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the initial beliefs are optimised to explain the in–sample data, consistent with pre-
vious results in the literature. Limiting the set of variables used in the forecasting
equations to a list of observed macro–variables can generate models that explain
the data better than models with MSV beliefs that use the complete set of observed
and unobserved state variables implied by the REE. We generally observe a con-
siderable updating in the belief equations in response to the systematic forecast
errors. However, the best–fitting models tend to have rather low estimated gain,
which suggests that it is the initial beliefs different from the RE–model consistent
ones that bring about improvement in the marginal likelihood, rather than the be-
liefs updating of the constant gain learning type per se. On the other hand, choos-
ing the initial beliefs that are too far away from the optimal ones leads to higher
estimated gains that facilitate evolution towards better forecasting equations. Our
results leave open a possibility that using alternative learning algorithms such as
Kalman filter which can converge faster than constant gain learning, see Sargent
and Williams (2005), can modify the tentative conclusion about higher importance
of initial beliefs than of the learning process itself.

In terms of IRFs our discussion was limited to the implications of the produc-
tivity and the monetary policy shock. The implications for the other shocks still
need to be documented. The implications for the productivity and the monetary
policy shock are very promising: the learning models are able to generate an infla-
tion response to productivity shocks that is very rapid and short lived, while the
response to monetary shocks is slow but very persistent. These result also over-
come some of the major shortcomings of the REE–DSGE models as indicated by
the DSGE–VAR methodology for identifying misspecification. Having forecasting
equations that differ significantly from those implied by the REE seems to be the
key to this result.

The additional dynamics that are introduced by the learning process do not sys-
tematically alter the estimated structural parameters of the DSGE model. This
result contradicts earlier claims in the literature, but is again in line with the re-
sults from the DSGE–VAR methodology which indicate misspecification but no
systematic bias in the structural parameters.
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A E–Stability of VAR Learning

For simplicity, we present the results for the case without a constant. The logic
will carry through if we were to include it.

As stated previously, VAR learning implies that the agents use the following PLM:

yt = bzt�1, (34)

where zt is a subset of the model endogenous variables. zt selects specific endoge-
nous variables, zt = Hyt

The agents’ PLM (34), inserted into the model equations23

yt = βEtyt+1 + δyt�1 + κwt,
wt = ρwt�1 + εt,

23These equations are, in fact, the same as (31): the structure of the model is such that the terms
at wt�1 and εt in (31) combine to produce exactly κwt.
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produces the Actual Law of Motion (ALM)

yt = (I � βbH)�1 δyt�1 + (I � βbH)�1 κwt, (35)

yt = (eTy, eTw) �
�

yT
t�1, wT

t

�T
. (36)

For comparison, if the agents started from the PLM that corresponds to the MSV,

yt = byt�1 + cwt,

the resulting ALM would be

yt = (I � βb)�1 δyt�1 + (I � βb)�1 (βcρ+ κ)wt. (37)

The ALM under VAR learning differs from the MSV solution; moreover, there is
only one parameter vector b, which could be used to set parameters of the PLM
and ALM equal to each other. This implies that the usual method of undetermined
coefficients could not be used to derive the stationary point of the map from PLM
to ALM. To derive this point, we need to calculate the E–stability ODE first and
then look at its stationary point(s). Restricting the PLM to a subset of the vari-
ables is associated with Restrictive Perceptions Equilibrium (RPE), see Evans and
Honkapohja (2001, Ch. 13.1.2). Moreover, one of the variables in z is not present
in the MSV set of variables and it is likely to contain some information from the
variables excluded from the RPE set; thus, we do expect that in equilibrium this
variable will be used in the forecasting equations. Therefore, the equilibrium in
question is, in fact, a mixure of the under– and over–parameterisation. For a lack
of a better term, we would call it Restrictive Perceptions Equilibrium.

Let’s consider the problem of E–stability. The updating equations could be written
as

bt = bt�1 + gR�1
t zt�1(y

f
t � bT

t�1Zt�1)
T = (38a)

bt�1 + gR�1
t zt�1

�
(eTy, eTw) �

�
yT

t�1, wT
t

�T
� bT

t�1zt�1

�T
, (38b)

Rt = Rt�1 + g(zt�1zT
t�1 � Rt�1). (38c)

Taking limits and expectations on the right hand side, we obtain that the E–stability
differential equations are

db
dτ

= eTyE
h
yt�1, zT

t�1

i
R�1 + eTwE

h
wt, zT

t�1

i
R�1 � b, (39a)

dR
dτ

= E
h

Zt�1ZT
t�1

i
� R. (39b)

The equation for R is globally stable around the equilibrium point R = M =
E
�
zt�1zT

t�1
�
= HE

�
yt�1yT

t�1
�

HT. The variance–covariance matrices E
�
yt�1, zT

t�1
�

43



and E
�
wt, zT

t�1
�

are themselves complicated functions of b, as they are determined
from (35) as a solution to matrix Lyapunov equation. Thus, the right hand side
of the E–stability ODE is a highly nonlinear function of eTy and eTw, which are, in
turn, non–trivial functions of b. It is very likely that the resulting RPE will differ
significantly from the RE–model consistent beliefs. The ODE is highly dimen-
sional: in case without the constant, its dimension equals 112. Linearization of
(39) and calculation of eigenvalues needed to determine local E–stability is likely
to result in an extremely complicated expression that will not contain any intuitive
results. Therefore, we turn to numerical simulations to find the equilibrium and
to determine whether it is E–stable.

Numerical simulations of the ODE (39) show that if one starts from the RE–model
consistent beliefs, E–stability is achived, whether the constant is included into the
vector z or not. However, when we simulate the ODE for the case with constant
and initialise the beliefs about the constants with some non–zero vector, a sort
of “quasi–stability” is observed: for a while, the beliefs seem to converge to the
equilibrium values, but then fast divergence starts. Given high dimensionality of
the ODE and its nonlinearity, we are not ready to claim that this behavior indicates
small region of attraction of the strongly E–stable equilibrium, especially in the
direction of beliefs about the constants. A purely numerical divergence might
become an issue. However, if the system is so close to the instability boundary
that small numerical errors might push MATLAB ODE solver into divergence,
small numerical errors made by the agents operating in real time may lead to the
same result (divergence).

In cases when we do obtain an equilibrium, it is very different from the RE–model
consistent beliefs. In particular, the variance–covariance matrix implies smaller
variances, and the response of some forward–looking variables to the observables
is much stronger than at the REE. Thus, the very presense of VAR learning changes
the resulting equilibrium. An evolution of beliefs from their initial values towards
the RPE (or lack thereof) might explain very low estimated gains in the VAR learn-
ing models. Most probably, the beliefs in the estimated models never come close
to the RPE.

B Data appendix

The model is estimated using seven key macro-economic time series: real GDP,
consumption, investment, hours worked, real wages, prices and a short-term in-
terest rate. GDP, consumption and investment are taken from the US Department
of Commerce - Bureau of Economic Analysis databank. Real Gross Domestic
Product is expressed in Billions of Chained 1996 Dollars. Nominal Personal Con-
sumption Expenditures and Fixed Private Domestic Investment are deflated with
the GDP-deflator. Inflation is the first difference of the log of the Implicit Price
Deflator of GDP. Hours and wages come from the BLS (hours and hourly com-
pensation for the NFB sector for all persons). Hourly compensation is divided by

44



the GDP price deflator in order to get the real wage variable. Hours are adjusted
to take into account the limited coverage of the NFB sector compared to GDP (the
index of average hours for the NFB sector is multiplied with the Civilian Employ-
ment (16 years and over) . The aggregate real variables are expressed per capita
by dividing with the population over 16. All series are seasonally adjusted. The
interest rate is the Federal Funds Rate. Consumption, investment, GDP, wages
and hours are expressed in 100 times log. The interest rate and inflation rate are
expressed on a quarterly basis corresponding with their appearance in the model.
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Table 1: Marginal likelihood of DSGE versus DSGE-VAR model as indication of
misspecification

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Benchmark REE-DSGE model DSGE-VAR model ( =1)_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________  ___________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.96 0.94 0.98 0.95 0.93 0.89 0.99
b Beta 0.50 0.20 0.18 0.22 0.08 0.36 0.44 0.50 0.20 0.76
g Beta 0.50 0.20 0.98 0.98 0.96 0.99 0.82 0.77 0.61 0.96
q Beta 0.50 0.20 0.71 0.71 0.62 0.81 0.51 0.50 0.32 0.68
r Beta 0.50 0.20 0.13 0.15 0.04 0.24 0.15 0.16 0.04 0.25
p Beta 0.50 0.20 0.90 0.89 0.81 0.97 0.69 0.56 0.21 0.85
w Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.95 0.74 0.56 0.98
p Beta 0.50 0.20 0.74 0.70 0.55 0.86 0.59 0.54 0.26 0.83
w Beta 0.50 0.20 0.89 0.85 0.76 0.94 0.81 0.53 0.18 0.85
ag Normal 0.50 0.25 0.53 0.52 0.38 0.67 0.52 0.52 0.35 0.69

Normal 4.00 1.50 5.49 5.74 3.97 7.42 3.84 3.89 2.37 5.69
c Normal 1.50 0.38 1.40 1.38 1.17 1.59 1.16 1.20 0.86 1.54

Beta 0.70 0.10 0.71 0.71 0.64 0.78 0.66 0.63 0.51 0.73
w Beta 0.50 0.10 0.74 0.71 0.60 0.81 0.69 0.73 0.62 0.85
l Normal 2.00 0.75 1.92 1.84 0.92 2.79 1.89 1.77 0.81 2.77
p Beta 0.50 0.10 0.66 0.65 0.56 0.74 0.65 0.64 0.57 0.72
w Beta 0.50 0.15 0.59 0.59 0.39 0.78 0.51 0.52 0.29 0.76
p Beta 0.50 0.15 0.23 0.24 0.10 0.38 0.39 0.46 0.20 0.75

Beta 0.50 0.15 0.55 0.55 0.36 0.72 0.51 0.53 0.35 0.74
Normal 1.25 0.13 1.62 1.61 1.48 1.74 1.53 1.55 1.41 1.69

r Normal 1.50 0.25 2.03 2.04 1.75 2.33 1.77 1.76 1.33 2.06
Beta 0.75 0.10 0.82 0.81 0.77 0.85 0.78 0.78 0.74 0.85

ry Normal 0.13 0.05 0.08 0.09 0.05 0.13 0.08 0.11 0.04 0.20
r y Normal 0.13 0.05 0.22 0.22 0.18 0.27 0.21 0.21 0.17 0.27

Gamma 0.63 0.10 0.82 0.79 0.61 0.96 0.65 0.68 0.50 0.85
Gamma 0.25 0.10 0.16 0.17 0.08 0.26 0.20 0.23 0.10 0.36

L Normal 0.00 2.00 -0.10 0.53 -1.30 2.33 0.01 -0.11 -1.50 1.26
Normal 0.40 0.10 0.43 0.43 0.41 0.45 0.38 0.39 0.26 0.53
Normal 0.30 0.05 0.19 0.19 0.16 0.22 0.18 0.19 0.15 0.22

Gain Gamma 0.035 0.03
a Invgamma 0.10 2.00 0.45 0.46 0.41 0.51 0.41 0.40 0.35 0.47
b Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.16 0.16 0.10 0.21
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.37 0.38 0.32 0.43
q Invgamma 0.10 2.00 0.45 0.45 0.37 0.53 0.46 0.48 0.36 0.62
r Invgamma 0.10 2.00 0.24 0.24 0.22 0.27 0.18 0.18 0.15 0.21
p Invgamma 0.10 2.00 0.14 0.14 0.11 0.17 0.14 0.15 0.12 0.20
w Invgamma 0.10 2.00 0.24 0.24 0.21 0.28 0.20 0.19 0.13 0.23________________________________________________________________________________________________________________________________________________________________

Posterior Mode -841.46 -834.17
Log Data Density (Laplace) -923.05 -897.77
Log Data Density (Mod.Harm.Mean) -922.15 -897.78________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 2: Simulation results for the different learning models and different gain parameters
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Table 3: Simulation results controlling for escape dynamics
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Table 4: Regression results for MSV learning with model-consistent initialisation of beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Learning with MSV beliefs (excl. constants) Learning with MSV beliefs (incl. constants)_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.96 0.94 0.98 0.96 0.96 0.94 0.98
b Beta 0.50 0.20 0.20 0.23 0.07 0.36 0.20 0.23 0.08 0.37
g Beta 0.50 0.20 0.97 0.97 0.96 0.99 0.97 0.97 0.96 0.99
I Beta 0.50 0.20 0.71 0.72 0.62 0.82 0.72 0.72 0.61 0.82
r Beta 0.50 0.20 0.13 0.16 0.05 0.26 0.13 0.16 0.05 0.26
p Beta 0.50 0.20 0.90 0.89 0.81 0.97 0.90 0.89 0.81 0.97
w Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.97 0.97 0.95 0.99
p Beta 0.50 0.20 0.74 0.68 0.50 0.85 0.74 0.68 0.52 0.85
w Beta 0.50 0.20 0.89 0.84 0.74 0.94 0.89 0.85 0.76 0.94
ag Normal 0.50 0.25 0.53 0.53 0.39 0.68 0.53 0.53 0.38 0.67

Normal 4.00 1.50 5.30 5.67 3.90 7.35 5.30 5.65 3.94 7.33
c Normal 1.50 0.38 1.40 1.34 1.12 1.55 1.40 1.35 1.13 1.57

Beta 0.70 0.10 0.71 0.72 0.65 0.79 0.71 0.72 0.66 0.79
w Beta 0.50 0.10 0.74 0.70 0.60 0.82 0.74 0.71 0.61 0.81
l Normal 2.00 0.75 2.03 1.92 0.96 2.88 2.03 1.97 0.98 2.93
p Beta 0.50 0.10 0.67 0.65 0.56 0.75 0.67 0.65 0.56 0.74
w Beta 0.50 0.15 0.62 0.59 0.38 0.80 0.62 0.59 0.39 0.80
p Beta 0.50 0.15 0.20 0.22 0.09 0.34 0.20 0.22 0.08 0.34

Beta 0.50 0.15 0.53 0.55 0.37 0.73 0.53 0.55 0.37 0.74
Normal 1.25 0.13 1.61 1.61 1.48 1.75 1.61 1.61 1.48 1.74

r Normal 1.50 0.25 2.00 2.02 1.74 2.32 2.00 2.02 1.72 2.30
Beta 0.75 0.10 0.82 0.81 0.77 0.85 0.82 0.81 0.77 0.85

ry Normal 0.13 0.05 0.09 0.08 0.05 0.12 0.09 0.09 0.05 0.12
r y Normal 0.13 0.05 0.22 0.22 0.17 0.26 0.22 0.22 0.17 0.26

Gamma 0.63 0.10 0.78 0.81 0.63 0.97 0.78 0.80 0.63 0.97
Gamma 0.25 0.10 0.15 0.17 0.07 0.27 0.15 0.17 0.07 0.26

L Normal 0.00 2.00 0.34 -0.02 -1.67 1.56 0.33 0.02 -1.69 1.61
Normal 0.40 0.10 0.44 0.43 0.41 0.45 0.44 0.43 0.41 0.45
Normal 0.30 0.05 0.19 0.19 0.16 0.22 0.19 0.19 0.16 0.22

Gain Gamma 0.035 0.03 0.012 0.018 0.001 0.034 0.012 0.019 0.002 0.036

a Invgamma 0.10 2.00 0.45 0.45 0.41 0.50 0.45 0.45 0.41 0.50
b Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.24 0.24 0.20 0.28
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.52 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.45 0.45 0.37 0.53 0.45 0.45 0.37 0.54
r Invgamma 0.10 2.00 0.24 0.24 0.22 0.27 0.24 0.24 0.22 0.27
p Invgamma 0.10 2.00 0.14 0.14 0.11 0.17 0.14 0.14 0.11 0.17
w Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.24 0.24 0.20 0.28________________________________________________________________________________________________________________________________________________________________

Posterior Mode -837.52 -837.51
Log Data Density (Laplace) -922.61 -922.48
Log Data Density (Mod.Harm.Mean) -922.56 -922.65________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 5: Regression results for MSV learning with optimised initial beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
MSV beliefs - Optimised initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________  ___________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.98 0.96 0.94 0.99
b Beta 0.50 0.20 0.16 0.23 0.13 0.32
g Beta 0.50 0.20 0.97 0.98 0.96 0.99
I Beta 0.50 0.20 0.32 0.45 0.33 0.56
r Beta 0.50 0.20 0.11 0.15 0.05 0.26
p Beta 0.50 0.20 0.96 0.93 0.88 0.97
w Beta 0.50 0.20 0.97 0.97 0.95 0.99
p Beta 0.50 0.20 0.87 0.84 0.78 0.90
w Beta 0.50 0.20 0.79 0.72 0.64 0.81
ag Normal 0.50 0.25 0.54 0.53 0.41 0.66

Normal 4.00 1.50 2.83 4.33 3.06 5.54 3.81
c Normal 1.50 0.38 0.93 0.99 0.85 1.12 1.30

Beta 0.70 0.10 0.79 0.80 0.75 0.84 0.69
w Beta 0.50 0.10 0.64 0.63 0.57 0.69 0.68
l Normal 2.00 0.75 1.46 1.61 0.80 2.35 1.97
p Beta 0.50 0.10 0.60 0.63 0.59 0.67 0.77
w Beta 0.50 0.15 0.59 0.53 0.33 0.71 0.59
p Beta 0.50 0.15 0.18 0.22 0.10 0.34 0.51

Beta 0.50 0.15 0.46 0.38 0.27 0.49 0.62
Normal 1.25 0.13 1.56 1.60 1.50 1.71 1.25

r Normal 1.50 0.25 1.95 1.91 1.58 2.22 1.70
Beta 0.75 0.10 0.84 0.84 0.80 0.88 0.64

ry Normal 0.13 0.05 0.14 0.13 0.07 0.18 0.03
r y Normal 0.13 0.05 0.21 0.19 0.15 0.24 0.15

Gamma 0.63 0.10 0.59 0.61 0.50 0.73 0.57
Gamma 0.25 0.10 0.27 0.26 0.14 0.38 0.25

L Normal 0.00 2.00 1.20 0.92 -0.14 2.00 1.26
Normal 0.40 0.10 0.45 0.43 0.41 0.45 0.45
Normal 0.30 0.05 0.18 0.18 0.16 0.19 0.19

Gain Gamma 0.04 0.03 0.02 0.01 0.01 0.02

a Invgamma 0.10 2.00 0.46 0.47 0.42 0.52
b Invgamma 0.10 2.00 0.26 0.25 0.22 0.28
g Invgamma 0.10 2.00 0.51 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.66 0.61 0.53 0.68
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.26
p Invgamma 0.10 2.00 0.14 0.14 0.12 0.16
w Invgamma 0.10 2.00 0.24 0.23 0.20 0.26________________________________________________________________________________________________________________________________________________________________

Posterior Mode 804.01
Log Data Density (Laplace) -888.99
Log Data Density (Mod.Harm.Mean) -910.97________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Tabel 6: Regression results for MSV learning with initial beliefs based on a pre-sample
model

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
MSV beliefs - presample initialisation Pre-Sample Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.87
b Beta 0.50 0.20 0.93 0.94 0.91 0.97 0.97
g Beta 0.50 0.20 0.99 0.99 0.98 1.00 0.88
I Beta 0.50 0.20 0.40 0.44 0.35 0.52 0.47
r Beta 0.50 0.20 0.05 0.07 0.01 0.12 0.31
p Beta 0.50 0.20 0.96 0.96 0.93 0.99 0.52
w Beta 0.50 0.20 0.98 0.97 0.95 0.98 0.46
p Beta 0.50 0.20 0.73 0.65 0.55 0.75 0.42
w Beta 0.50 0.20 0.77 0.71 0.66 0.78 0.51
ag Normal 0.50 0.25 0.57 0.56 0.43 0.70 0.64

Normal 4.00 1.50 3.11 4.61 3.20 6.05 3.62
c Normal 1.50 0.38 1.13 1.04 0.85 1.22 0.94

Beta 0.70 0.10 0.62 0.68 0.64 0.73 0.52
w Beta 0.50 0.10 0.58 0.60 0.54 0.66 0.83
l Normal 2.00 0.75 1.73 1.86 1.14 2.60 1.69
p Beta 0.50 0.10 0.53 0.53 0.46 0.61 0.41
w Beta 0.50 0.15 0.49 0.45 0.29 0.63 0.43
p Beta 0.50 0.15 0.52 0.52 0.34 0.69 0.37

Beta 0.50 0.15 0.45 0.42 0.35 0.48 0.50
Normal 1.25 0.13 1.51 1.48 1.39 1.57 1.58

r Normal 1.50 0.25 1.97 1.97 1.71 2.26 1.30
Beta 0.75 0.10 0.79 0.78 0.74 0.81 0.97

ry Normal 0.13 0.05 0.16 0.16 0.12 0.19 0.15
r y Normal 0.13 0.05 0.26 0.26 0.22 0.30 0.06

Gamma 0.63 0.10 0.46 0.47 0.40 0.55 0.57
Gamma 0.25 0.10 0.20 0.27 0.12 0.39 0.21

L Normal 0.00 2.00 2.59 2.61 2.11 3.13 0.90
Normal 0.40 0.10 0.45 0.45 0.42 0.49 0.58
Normal 0.30 0.05 0.21 0.20 0.19 0.21 0.20

Gain Gamma 0.04 0.03 0.02 0.02 0.02 0.03

a Invgamma 0.10 2.00 0.46 0.48 0.43 0.53 0.59
b Invgamma 0.10 2.00 0.10 0.11 0.09 0.12 0.05
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.91
I Invgamma 0.10 2.00 0.58 0.56 0.50 0.61 0.81
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.27 0.09
p Invgamma 0.10 2.00 0.20 0.19 0.17 0.21 0.43
w Invgamma 0.10 2.00 0.28 0.27 0.23 0.31 0.35________________________________________________________________________________________________________________________________________________________________

Posterior Mode 830.57
Log Data Density (Laplace) -915.54
Log Data Density (Mod.Harm.Mean) -944.37________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 7: Regression results for VAR learning with model-consistent initialisation of beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - REE initialisation_________________________  ___________________________________

 Prior distribution Posterior distribution_________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.95 0.95 0.93 0.98
b Beta 0.50 0.20 0.19 0.22 0.08 0.35
g Beta 0.50 0.20 0.99 0.98 0.97 1.00
I Beta 0.50 0.20 0.54 0.54 0.45 0.64
r Beta 0.50 0.20 0.12 0.15 0.05 0.25
p Beta 0.50 0.20 0.91 0.88 0.82 0.95
w Beta 0.50 0.20 0.97 0.95 0.90 0.99
p Beta 0.50 0.20 0.57 0.59 0.41 0.76
w Beta 0.50 0.20 0.88 0.81 0.72 0.91
ag Normal 0.50 0.25 0.51 0.51 0.36 0.67

Normal 4.00 1.50 3.89 4.18 2.63 5.79
c Normal 1.50 0.38 1.37 1.34 1.10 1.59

Beta 0.70 0.10 0.72 0.73 0.65 0.81
w Beta 0.50 0.10 0.74 0.72 0.62 0.82
l Normal 2.00 0.75 2.14 2.03 1.03 3.01
p Beta 0.50 0.10 0.68 0.68 0.60 0.76
w Beta 0.50 0.15 0.61 0.55 0.36 0.75
p Beta 0.50 0.15 0.07 0.14 0.05 0.23

Beta 0.50 0.15 0.46 0.49 0.30 0.66
Normal 1.25 0.13 1.64 1.63 1.50 1.76

r Normal 1.50 0.25 1.95 1.98 1.68 2.29
Beta 0.75 0.10 0.82 0.81 0.77 0.86

ry Normal 0.13 0.05 0.09 0.09 0.05 0.12
r y Normal 0.13 0.05 0.22 0.22 0.17 0.25

Gamma 0.63 0.10 0.76 0.79 0.60 0.95
Gamma 0.25 0.10 0.15 0.16 0.07 0.25

L Normal 0.00 2.00 0.47 0.33 -1.40 2.23
Normal 0.40 0.10 0.42 0.42 0.39 0.45
Normal 0.30 0.05 0.18 0.19 0.16 0.22

Gain Gamma 0.035 0.030 0.001 0.002 0.000 0.004

a Invgamma 0.10 2.00 0.45 0.46 0.41 0.50
b Invgamma 0.10 2.00 0.28 0.29 0.26 0.32
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.90 0.92 0.83 1.00
r Invgamma 0.10 2.00 0.24 0.25 0.22 0.27
p Invgamma 0.10 2.00 0.06 0.08 0.06 0.11
w Invgamma 0.10 2.00 0.28 0.28 0.25 0.31________________________________________________________________________________________________________________________________________________________________

Posterior Mode 834.61
Log Data Density (Laplace) -921.74
Log Data Density (Mod.Harm.Mean) -921.65________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________



53

Table 8:  Regression results for VAR learning with optimised initial beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - Optimised initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.95 0.92 0.99
b Beta 0.50 0.20 0.12 0.14 0.04 0.25
g Beta 0.50 0.20 0.97 0.97 0.95 0.99
I Beta 0.50 0.20 0.56 0.55 0.44 0.65
r Beta 0.50 0.20 0.12 0.16 0.04 0.26
p Beta 0.50 0.20 0.95 0.93 0.88 0.98
w Beta 0.50 0.20 0.88 0.80 0.62 0.97
p Beta 0.50 0.20 0.57 0.59 0.45 0.75
w Beta 0.50 0.20 0.67 0.58 0.38 0.80
ag Normal 0.50 0.25 0.52 0.52 0.36 0.68

Normal 4.00 1.50 3.39 3.74 2.37 5.09 3.02
c Normal 1.50 0.38 1.01 1.06 0.77 1.33 1.14

Beta 0.70 0.10 0.74 0.74 0.64 0.83 0.73
w Beta 0.50 0.10 0.71 0.73 0.65 0.81 0.57
l Normal 2.00 0.75 2.33 2.31 1.26 3.30 1.44
p Beta 0.50 0.10 0.62 0.62 0.55 0.69 0.62
w Beta 0.50 0.15 0.57 0.53 0.35 0.73 0.43
p Beta 0.50 0.15 0.07 0.10 0.03 0.16 0.26

Beta 0.50 0.15 0.50 0.49 0.27 0.69 0.40
Normal 1.25 0.13 1.58 1.59 1.45 1.72 1.37

r Normal 1.50 0.25 1.85 1.84 1.53 2.15 1.70
Beta 0.75 0.10 0.85 0.86 0.82 0.90 0.57

ry Normal 0.13 0.05 0.12 0.12 0.06 0.17 0.04
r y Normal 0.13 0.05 0.20 0.20 0.16 0.25 0.17

Gamma 0.63 0.10 0.74 0.75 0.58 0.94 0.74
Gamma 0.25 0.10 0.19 0.21 0.10 0.32 0.21

L Normal 0.00 2.00 -0.60 -0.54 -2.05 0.81 -0.49
Normal 0.40 0.10 0.42 0.42 0.40 0.44 0.42
Normal 0.30 0.05 0.17 0.18 0.15 0.21 0.26

Gain Gamma 0.035 0.030 0.001 0.002 0.001 0.003

a Invgamma 0.10 2.00 0.46 0.47 0.42 0.51
b Invgamma 0.10 2.00 0.27 0.27 0.24 0.30
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.57
I Invgamma 0.10 2.00 0.91 0.93 0.84 1.02
r Invgamma 0.10 2.00 0.23 0.23 0.21 0.26
p Invgamma 0.10 2.00 0.06 0.07 0.05 0.08
w Invgamma 0.10 2.00 0.29 0.29 0.26 0.32________________________________________________________________________________________________________________________________________________________________

Posterior Mode 821.12
Log Data Density (Laplace) -903.91
Log Data Density (Mod.Harm.Mean) -904.29________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 9:  Regression results for VAR learning with initial beliefs based on a pre-sample
model

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - Pre-sample initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.97 0.96 0.93 0.99 0.87
b Beta 0.50 0.20 0.21 0.22 0.09 0.34 0.97
g Beta 0.50 0.20 0.99 0.99 0.99 1.00 0.88
I Beta 0.50 0.20 0.65 0.66 0.56 0.77 0.47
r Beta 0.50 0.20 0.11 0.14 0.04 0.24 0.31
p Beta 0.50 0.20 0.93 0.89 0.80 0.97 0.52
w Beta 0.50 0.20 0.68 0.70 0.52 0.91 0.46
p Beta 0.50 0.20 0.68 0.64 0.50 0.79 0.42
w Beta 0.50 0.20 0.49 0.49 0.24 0.72 0.51
ag Normal 0.50 0.25 0.54 0.53 0.38 0.68 0.64

Normal 4.00 1.50 4.25 4.64 3.13 6.18 3.62
c Normal 1.50 0.38 1.06 1.11 0.88 1.34 0.94

Beta 0.70 0.10 0.79 0.78 0.72 0.84 0.52
w Beta 0.50 0.10 0.75 0.75 0.69 0.82 0.83
l Normal 2.00 0.75 2.62 2.55 1.58 3.50 1.69
p Beta 0.50 0.10 0.61 0.63 0.51 0.74 0.41
w Beta 0.50 0.15 0.47 0.47 0.29 0.66 0.43
p Beta 0.50 0.15 0.57 0.59 0.40 0.80 0.37

Beta 0.50 0.15 0.51 0.49 0.29 0.69 0.50
Normal 1.25 0.13 1.57 1.57 1.44 1.71 1.58

r Normal 1.50 0.25 1.78 1.75 1.43 2.08 1.30
Beta 0.75 0.10 0.87 0.87 0.84 0.91 0.97

ry Normal 0.13 0.05 0.13 0.13 0.07 0.19 0.15
r y Normal 0.13 0.05 0.20 0.20 0.16 0.24 0.06

Gamma 0.63 0.10 0.70 0.75 0.56 0.93 0.57
Gamma 0.25 0.10 0.18 0.21 0.09 0.34 0.21

L Normal 0.00 2.00 0.44 0.69 -0.70 2.14 0.90
Normal 0.40 0.10 0.44 0.43 0.40 0.47 0.58
Normal 0.30 0.05 0.18 0.18 0.15 0.21 0.20

Gain Gamma 0.035 0.030 0.016 0.017 0.012 0.022

a Invgamma 0.10 2.00 0.46 0.46 0.41 0.51 0.59
b Invgamma 0.10 2.00 0.29 0.29 0.26 0.32 0.05
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.91
I Invgamma 0.10 2.00 0.95 0.97 0.88 1.07 0.81
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.26 0.09
p Invgamma 0.10 2.00 0.20 0.20 0.18 0.23 0.43
w Invgamma 0.10 2.00 0.29 0.30 0.27 0.33 0.35________________________________________________________________________________________________________________________________________________________________

Posterior Mode 859.07
Log Data Density (Laplace) -946.19
Log Data Density (Mod.Harm.Mean) -938.17________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Figure 1: IRF of a monetary policy and a productivity shock on inflation: DSGE versus
DSGE-VAR
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Grey line: the benchmark DSGE-VAR IRF (mode in bold and 90% interval).
Black line: the REE-DSGE IRF.
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Figure 2a: Simulation profile for MSV learning with different gains:
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Table 2b: Simulation profile for VAR learning and different gains:
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Figure 3a : IRF for a  monetary policy and a productivity shock on output and inflation: MSV
learning for different initial beliefs (gain=.02)
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Gray line : IRF for different initial beliefs based on draws from the estimated posterior distribution of the REE model (median
and 10-90% deciles)
Black line: median for the DSGE-REE model.
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Figure 3b : IRF for a  monetary policy and a productivity shock on output and inflation: VAR
learning for different initial beliefs (gain=.02)
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Figure 4: Differences in the reaction of realised and expected inflation following a monetary
policy shock under RE and learning
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Figure 5: Simulated belief coefficients under different learning mechanisms: coefficient of
lagged inflation in the inflation belief regression (starting from the beliefs of the REE model,
and gain=0.01)
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Figure 6: Relation between logarithm of non-escape probability and first escape time
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Simulations with MSV+cte learning and gain = 0.03. A large deviation is defined as a realisation where a state vector
variable takes on a value that exceeds four times the standard deviations (observed in the REE) away from the steady state.
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Figure 7: Impulse Response Functions for the MSV model with optimised initial beliefs
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Figure 8: Impulse Response Functions for the MSV model with pre-sample based initial
beliefs
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Figure 9: Impulse Response Functions for the VAR beliefs with model consistent initial
beliefs
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Figure 10: Impulse Response Functions for the VAR beliefs with optimised initial beliefs
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Figure 11: Impulse Response Functions for the VAR beliefs with pre-sample based initial
beliefs
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