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Abstract

This paper comments on selected aspects of identification issues of DSGEmodels.
It suggests the singular value decomposition as a useful tool for detecting local non-
and weak identification. The decomposition is useful for checking rank conditions
of identification, identification strength and, importantly, it offers ‘identification
patterns’ of the parameter space. With respect to other methods of identifiability
structure of the parameter space of a given model the singular value decomposition
is particularly easy to apply and offers an intuitive interpretation. We suggest a
simple algorithm for detecting non- and weak identification and an algorithm for
finding a set of most identifiable set of parameters. We also demonstrate that use
of bivariate and multiple correlation coefficients of parameters is only limited check
for identification problems.
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Introduction

This paper is about a method and pictures that go with it.1 The method suggested

deals with inspection of ‘identification patterns’ in Dynamics Stochastic General

Equilibrium (DSGE) models build by economists and used for research and policy

analysis, but is not limited only to these models.

DSGE models are nowadays typically estimated relying on formal econometric

full- or limited information methods instead of less formal calibration of parameters.

In order to obtain meaningful results of estimation, parameters must be ‘identified’,

in the since that different set of structural parameters should not result into ob-

servationally equivalent outcomes. Importantly, identification is relevant in both

classical (frequentist) and Bayesian approach to statistical inference.

We show that identification of DSGE models effectively boils down into a pro-

blem of invertible linear transformations, i.e. whether one can recover structural

parameters θ from a set of reduced-form parameters τ(θ) that are functionally de-

pendent on those structural ones, or of a parameter sensitivity of selected criterion

function. In the context of the problem order and rank conditions naturally arise.

Our goal is to find out non-identified and weakly identified parametrizations,

their structures and suggest the most plausible restrictions on unidentified para-

meters. To understand what parameters or combinations of structural parameters

are the cause of the problem, we propose to inspect four basic subspaces of linear

maps which allow to locate identifiable and non-identifiable subspaces in the para-

meter space. We suggest that the singular value decomposition is natural candidate

for locating the unidentified parameter subspace and delivers also insight into the

‘strength’ of the identification. Further, we demonstrate that bivariate and mul-

tiple correlation measures may provide rather missleading view about identification

and demonstrate a method for detecting best identified parameters based on rank-

revealing factorizations.

The issue of identification is of course well-known in the econometrics literature,

e.g. Fisher (1966), Rothemberg (1971), Hannan (1971) or Hsiao (1983) to name but

few classics. A research on ‘weak’ identification has been recently stimulated by

Staiger and Stock (1997), or Stock, Wright and Yogo (2002).

The identification problem related to DSGE models has been perhaps under-

researched for a while and seem still neglected by some researches in the area.

Importantce of the issue was reminded by Canova and Sala (2006) and Canova and

Sala (2009), lucid paper by Cochrane (2007) or investigation by Iskrev (2008) and

Iskrev (2009b) with focus on estimation. Cochrane (2007) and Beyer and Farmer

(2007) rise the important issue of observationally equivalent structures and types

1The opening sentence is inspired by Strang (1993)
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of equilibria in connection –with often arbitrary– lag length restrictions, a point

raised previously by Pesaran (1987) and Sargent (1978). These papers alert to the

importance of inspection of border-line lag specifications, since absence or presence

of sufficient lag length may prevent or deliver identifiability for important structural

parameters.

The very recent contribution of Komunjer and Ng (2009) states necessary and

sufficient order and rank conditions for local identifiability of DSGE models, so

we do not restate the results. The commonality of this paper and Komunjer and

Ng (2009) is the departure from well-established literature on identification of li-

near and non-linear dynamic state-space models in an engineering literature.2 The

above mentioned paper adjusts some of the results by an engineering classics Glover

and Willems (1974) or Grewal and Glover (1976), inter alia, to specific conditions of

DSGE models – e.g. possible stochastic singularity and lack of observed input. These

are important contributions, providing both necessary and sufficient conditions for

local-identifiability of (minimal) state-space realizations from auto-covariance ge-

nerating function (ACGF). The method suggested in this paper complements the

optimal selection of restriction in unidentified models.

After some progress in the analysis of the identification via the nullspace of

the linear map and the singular value decomposition and its applications, the ef-

fort to treat the issue formally we have found a related work on multicollinearity

and identification. In the field of regression analysis Belsley, Kuh and Welsch (1980)

discuss multicollinearity detection and mention the use of SVD. Vajda, Rabitz, Wal-

ter and Lecourtier (1989) use eigenvalue decompositions of the Information matrix

in chemical engineering models motivated by principal components, and recently

Van Doren, den Hof, Jansen and Bosgra (2008) use the singular value decomposi-

tion for the analysis of the Information matrix as it is also suggested bellow. The use

of the SVD for detecting multicollinearity and near collinearity is thus not novel,

though we treat the issue in greater detail, with stronger relation to subspaces and

also suggest an algorithm for a parameter subset selection.

The plan of the paper is as follows. The first sections defines the issue of identifi-

cation and its importance. The second section focuses on the analysis of the presence

of unidentifiability and its sources by inspecting the rank and the nullspace of the

linear map. Section three investigates the strength of identifiability in relationship

with collinearity detection, provides algorithm for parameter subset selection and

analyzes the limitations of correlation measures. Section four demonstrates the me-

thod using two well-established DSGE models and then we conclude.

2In engineering literature by ‘identification’ of the model it is often understood estimation of the model,
yet structural identification is also dealt with. Another important difference is often the availability of
both output and input of the system in engineering, which is not the case in economics.
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1 Identification and Observational Equivalence

1.1 Identification Defined

Identification is related to observational equivalence and with ability to draw infe-

rence on parameters from the data.

Let Y be the set of observations and let structure S be a complete probability

specification of Y in the form S = F (Y, θ) where θ ∈ Θ ⊂ Rn is the vector of

parameters, Θ being the parameter space. Two structures, S0 = F (Y, θ0) and S∗ =

F (Y, θ∗) are said to be observationally equivalent, if F (Y, θ0) = F (Y, θ∗) for almost

all Y . The structure is identified if this equality means θ0 = θ∗, and unidentified

otherwise.

Often the inspection of global identification for the whole parameter space is

difficult, so we say that the structure is locally identified if there exists an open

neighbourhood of θ0 containing no other θ ∈ Θ which produces observationally
equivalent structure. This paper treats only local identification of DSGE models,

that is identification nearby the specific value of θ in the parameter space Θ.

In a lucid paper Rothemberg (1971) proved, subject to some regularity conditi-

ons, that θ0 is locally identified for a given structure if and only if the Information

matrix evaluated at θ0 is not singular, i.e. of defficient rank. Further, note that

Rothemberg (1971) stated the results for two important cases – (i) the case of In-

formation matrix without existence of the reduced form structure and (ii) in case

of existence of the reduced form, where reduced form parameters τ ∈ T ⊂ Rm may

help to establish the identification of the structural parameters. We thus assume

existence of reduced form parameters and the mapping T (θ, τ) = 0.

In case where T (θ, τ) = 0 exists and, importantly, if reduced form parameters are

identified, the necessary and sufficient condition for identification is that T ≡ ∂T/∂θ′

is of full rank. The question is thus whether we can find a unique solution from τ

to θ.

Bayesian View of the Identification Problem First we briefly comment

on a possible Bayesian view on the identification issues. The problem of identification

does not seem as clearcut under the Bayesian paradigm as under a Classical one,

see Aldrich (2002) for the enlightening review and discussion of how likelihood and

identification went Bayesian. In our view the issue must be divided into ‘genuine

Bayesians’ and ‘Bayesians out-of-convenience’, who consider prior information only

as a method of regularization of the optimization problem of the likelihood.

Aldrich (2002) discusses the difficult evolution of ‘identification’ under the Baye-

sian paradigm where parameters may be estimable even when data are completely
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uninformative abou these. There were requests for broadening the concept of identi-

fication for Bayesians, view that ”underidentifiability causes no real difficulty in the

Bayesian approach” (Dréze 1972) followed by recognition that ”. . . it was misleading

to use the word ‘identification’ in defining a property of the prior density for the pa-

rameters of unidentified models. [I] agree with Kadane’s view that ‘identification is a

property of the likelihood function and it is the same whether considered classically

or from the Bayesian approach’” in (Dréze 1975).

The uninformativeness of the data for parameters can be treated as marginal

uninformativeness or conditional uninformativeness, see Poirier (1998). It is a com-

mon view that equality of marginal posterior with a prior distribution is a sign of

lack of identification and uninformativeness of the data about a parameter. The

likelihood is non- or weakly responsive for changes in the parameter and the prior

information dominates no matter what the sample size is, beliefs may not be revised

about the parameter. On the other hand, when there is an explicit or an implicit

dependence among parameters the data may be marginally informative even for con-

ditionally unidentified parameter, hence the difference of marginal posterior from

prior density is not sufficient sign of identification.

In case of ‘Bayesians out-of-convenience’ the importance of identification as a

property of the likelihood or data informativeness in general are important, since

as it is argued in Gelman, Carlin, Stern and Rubin (2004, Chapter 4) or recently

by Guerron-Quintana, Inoeu and Kilian (2009) or Moon and Schorfheide (2009) the

large sample inference and frequency properties of Bayesian inference are impor-

tantly affected by identification problems. The key fact is that the likelihood does

not dominate the prior information as sample size grows.

We limit ourselves to identification in terms of whether the data may become

informative for parameters and thus we explore the properties of likelihood or other

criterion functions.

1.2 DSGE Models Case

We write down a linear or linearized DSGE model in a standard state-space form

as

Xt = C1(θ) + T(θ)Xt−1 + R(θ)εt (1)

Yt = C2(θ) + Z(θ)Xt +H(θ)εt, (2)

where the state-space parameters are functionally related to set of structural pa-

rameters θ as indicated by the notation and E[εε′] = S(θ). We declare the set of
reduced form parameters as

τ ≡ {vec C1(θ); vec C2(θ); vec T(θ); vec R(θ); vec Z(θ); vec H(θ); vec S(θ)}.
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The properties of the mapping T (θ, τ) = 0 are crucial for identification of DSGE

models. Due to its highly non-linear nature we inspect the Jacobian of the map

evaluated at particular θ so we explore linear map τ = Tθ. Note that the non-

uniqueness of the solution of this map is sufficient to bring unidentification. Its

uniqueness is only necessary condition for identificiation since τ may not be well

identified.3

We take the model under inspection as given. We do not follow the implication of

unidentificiation or weak identification for possible modification of a model economic

structure, etc. At this moment we also consider the set of observables as given,

although it is clear that the identification analysis is always conditional on the

set of observables of the model. Note that this is not the same as distinguishing

limited information and full-information methods of estimation (Canova and Sala

2009), it concerns the model’s proper transfer function and thus also full-information

methods.

Estimation Methods The method discussed bellow is not limited to a par-
ticular estimation method. It focuses on two basic ingredients – the Hessian of the

criterion function and, in if plausible, the mapping from structural parameters to

reduced form parameters.

In particular we shall focus on the Information matrix based on the log-likelihood

function of the state-space model, we do not restrict ourselves to a particular way

of obtaining the likelihood function of the model, see e.g. Harvey (1989). Likelihood

functions convey full information and it is the key building block of Bayesian esti-

mation of DSGE models that became popular. We carry out all exercises without

use of the data and we do not estimate the model. We evaluate identification in

certain areas of parameter space. However, the number of time periods T is an

important as it enters the likelihood function as a parameter.

We shall thus explore properties the information matrix

R(θ) ≡ E
{(

∂L

∂θ′

)′ (∂L

∂θ′

)}
= E

{(
∂τ

∂θ′

)′ [(
∂L

∂τ ′

)′ ( ∂L

∂τ ′

)] (
∂τ

∂θ′

)}
(3)

= E
{(

∂τ

∂θ′

)′
R(τ)

(
∂τ

∂θ′

)}
, (4)

and the mapping Tθ = τ , where θ ∈ Θ ⊂ Rn is the vector of structural parameters

and τ ∈ T ⊂ Rm is the vector of reduced form parameters – if plausible – and R(τ)

is defined as the information matrix with respect to reduced form parameters.

3Recall that state-space models can be related by similarity transforms, which are unique in case of
minimal systems, so the state Xt is not identified up to rotation, see e.g. Kailath (1980) or Harvey (1989),
and for the role in identification Glover and Willems (1974) or Komunjer and Ng (2009). Further, we do
not make any further assumptions in terms of observability and controllability since we care about the
presence of structural identifiability, though these are related, see e.g. DiStefano (1977).
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2 Identification and Linear Maps

The identification issue generally boils down to inspecting a rank of a matrix, which

often is an Fisher Information-matrix, Hessian of a particular estimation criterion

function with respect to θ or a linear map from structural parameters θ to reduced

form parameters τ such as τ = Tθ. Ideally we need to inspect the rank of the matrix

and –if possible– determine the causes of the rank-deficiency of the matrix. In case

of reduced form parameters the question may also be posed about the invertibility

of the linear map (its matrix) T .

Let us first focus on the intuitive case of the mapping Tθ = τ , where T is the

Jacobian. Let θ ∈ Θ ⊂ Rn and let τ ∈ T ⊂ Rm, which implies that the matrix of

the map T is (m × n). To investigate the mapping one can use standards results

from linear algebra. In our view Simmons (2003), Strang (1988), Axler (1997) and

Golub and van Loan (1996) are useful general references, Strang (1993) is a joy to

read.

2.1 Important Subspaces and SVD

The relationship Tθ = τ is fully described by linear transformation, its matrix T and

its four fundamental subspaces – null space of T , null(T ), range of T and null space

and range of T ′, whose dimensions obey many important rules, most importantly,

dim range(T ) + dim null(T ) = n. (5)

We define rank of T as rank(T ) = dim range(T ). A not self-evident fact is that

the rank of the column space is equal to the rank of the row space of the matrix,

hence the concept of rank is unambiguous, i.e. dim range(T ) = dim range(T ′).

Recall that the null space of linear transform is a subspace of its domain and

consists of all vectors which are the solution to Tθ = 0. Importantly, when the range

is of dimension r the null space is of dimension n− r.

It is clear that only when τ is in the range(T ), i.e. in the column space of T , we

can solve the problem Tθ = τ . If m < n the problem for obtaining unique structural

parameters from reduced ones is ill posed. This is due to the fact that order condition

does not hold and it is impossible for the columns of T to be independent. For at

least one solution we require m ≤ n, but in order to hope for at most one solution

we require m ≥ n.

These facts are quite well known, so for exact identification we search for a unique

solution and thus we require the linear map determined by matrix T to be of a full

rank. Importantly, we demonstrate that the inspection of subspaces associated with

T bring insight into the problem, due to their orthogonal properties. The null space
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of T is orthogonal to range of T ′ and also range of A is orthogonal to left-null space,

null (T ′), which has dimension of m− r.

An absence of null (T ′) implies that a solution can always be found and an

absence of null (T ) indicates that the solution is unique. The absence of nullspace

of T is easy to check via rank conditions guaranteeing unique solution, when T is

not singular.

When there is not a unique solution and thus the null space of T is not empty,

it is crucial to explore the structure of the null space, which determines subspace

of unidentifiable parameters. We may inspect the row Echelon form to find out free

elements. Consequently, we need to find some ‘suitable’ basis of the subspace. The

linear map is expressed by a matrix T , yet linear maps are defined with respect

two basis – domain and target. When the basis are not stated explicitly standard

basis can be assumed. Operators (maps from a space to itself) require only one basis.

Most results on matrix factorisations, where the mapping is expressed to some ‘nice’

basis, concern square non-singular matrices. It is useful to have more general tool

to analyze the matrix of a linear mapping. Such a useful tool is the Singular value

decomposition (SVD).

Singular value decomposition If A is a real (m×n) matrix, then there exist

orthogonal matrices

U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n

such that

U ′AV = Σ = diag(σ1, . . . , σ
p) ∈ Rm×n, p = min{m,n}

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, (Golub and van Loan 1996).

Using an SVD, we can find a very ‘nice’ bases for the subspaces needed. We have

obtained orthonormal basis vectors and the matrix of the linear map is diagonal

with respect to both bases. Importantly we can find the SVD factorisation for any

(m×n) matrix, not necessarily square, or symmetric or well-behaved any other way.

Moreover, no complex numbers are involved after applying SVD to real matrix. The

cost is, however, that we have two orthogonal bases, which do not cancel mutually.

For some problems this might be an issue, but in our case this is not. The SVD

is intimately connected to the eigenvalue decomposition (EVD), which for square

and symmetric matrices –such as the Fisher information matrix– delivers the same

decomposition, with a diagonal matrix and a single basis.

The SVD has numerous very useful and interesting properties and consequences.

We need only few for our purpose. As it is common, σi are labeled as singular values

and vectors ui,vi are the i-th left and right singular vectors, respectively. Further
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we have A = UΣV ′ and thus Avi = σiui and A′ui = σivi for i respecting dimensions

of U, V .4

The SVD is a standard way of determining a rank of the matrix, one of our

goals. The rank of a matrix A is r such that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = 0, (6)

that is, the rank of a matrix r is equal to number of nonzero singular values. This is

why the diagonal form under new basis is so useful – the inputs from the subspaces

associated with the zero singular values are annihilated. The matrix of rank r can

thus be rewritten factorized as

A =
[
U1 U2

] [
Σ1 0

0 0

] [
V ′
1

V ′
2

]
= U1Σ1V

′
1 =

r∑
i=1

σiuiv
′
i, (7)

where U1 is (m × r), Σ1 is (r × r) and V ′
1 is (r × n). The individual matrices

accumulated in the sum are of rank r = 1. Importantly, with respect to near-

collinearity and compression, the approximation for a particular order of the sum

of rank-one matrices can be understood as optimal.

Once the rank is determined one knows whether the identification problem be-

comes immediate. If the matrix is rank-deficient, i.e. r < min{m,n}, it means that
null space of A is not empty. If it is not empty, it structure will indicate the suspects.

We have that

null(A) = span{vr+1, . . . , vn} (8)

range(A) = span{u1, . . . , ur}, (9)

so the ‘criminals’ form a basis for the null space of A. Those unidentified parameter

combinations can be found in V ′
2 and as a bonus – they are sorted according to

degree of their ‘crime’ and are ‘dressed’ as normalized unit vectors.

In what follows we label the structure of the null space of the linear map under

consideration as an identification pattern. Next sections demonstrate in more detail

how identification patterns can be used and interpreted.

2.2 Identification Patterns, Nullspace and Restrictions

As we have demonstrated, inspecting several subspaces associated with a linear map

suggest insights into roots of (near) singularity. Assume we have already decomposed

the Information matrix R(θ) or map T and found it of rank r, r < min{m,n} and
4Hence ‖Avi‖ = σi. Also ui = Avi/σi and it is a unit eigenvector of AA′, so σ2i are positive eigenvalues

of AA′.

9



thus rank-deficient. Thus we have matrices V = [V1 V2] and U = [U1 U2] that

capture the necessary information about the map. In case of the square symmetric

matrix we have U = V .

The rows of V ′
2 provide an orthonormal basis of the nullspace of the map and

identify directions in the parameter space where the parameters are structurally

unidentifiable. The columns of U1 constitute the orthonormal basis for the range

(column space) of the linear map (the Information matrix) and constitutes a map-

ping from the original parameter space Θ to lower dimensional parameter space K
of dimension (n− r).

Rank-deficiency implies a necessity of restriction of the parameter space of a

particular order. The inspection of the nullspace and the range of the map suggests

what these restrictions should be in order to achieve local identification. Basically

one needs to get rid of the members of the nullspace. Consider a restriction from

θ ∈ Θ ⊂ Rn into κ ∈ K ⊂ Rr given by φ(κ, θ) = 0. Then ∂θ/∂κ′ = U1 or simply

θ = U1κ where U ′
1 is (r× n) matrix. Reparameterizing the model in terms of κ and

calculating the Information matrix R(κ), an (r × r) matrix, we get

R(κ) = E
{(

∂L

∂κ′

)′ ( ∂L

∂κ′

)}
(10)

= E
{(

∂θ

∂κ′

)′ [(
∂L

∂θ′

)′ (∂L

∂θ′

)] (
∂θ

∂κ′

)}
(11)

= E
{(

∂θ

∂κ′

)′ [
UΣV ′](

∂θ

∂κ′

)}
= E

{(
∂θ

∂κ′

)′ [
U1Σ1V

′
1

](
∂θ

∂κ′

)}
(12)

= E{U ′
1U1Σ1U1U

′
1} = E{Σ1}, (13)

which is obviously of rank r as required. This rank condition is related to rank

conditions of stacked [R(θ); φ(.)] as in Rothemberg (1971).

To highlight the intuition, assume a very special case of R(τ) = 1, perfectly

identified reduced form parameters, and thus R(θ) = E{T ′T}. Then using SVD to
analyze T = UΣV ′ delivers

R(θ) = E(V Σ̃V ′), (14)

where Σ̃ = Σ2 and V is shared by the map from structural to reduced form parame-

ters and the Information matrix. In this case the results of identification exploration

would be identical whether one explores R(θ) or T .

Since the nullspace of the linear map is usually much smaller than the range

(column space) of the map it is easier to analyze and derive restrictions from there.

The nullspace is spanned by columns of V2 = [vr+1, . . . , vn], an (n× n− r) matrix.

From right to the left the (n× 1) vectors provide the basis for the spaces associated
with the associated eigenvalue – zero or numerically zero. As indicated, ‖vk‖ = 1
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and viv
′
j = 0 for i 6= j. Since for each vi in the nullspace Tvi = 0, using the column

view it is intuitive that elements of vi determine linear dependent columns.

Note that this type of exploration of, for instance, the identity matrix would

result into the set of identical singular values and all elements of V,U with unitary

vectors forming the standard basis.

To enhance the intuition further, we demonstrate three important and clear cases

which can help in understanding of identification patterns. Assume for the moment

that in the vector of parameters θ the element θ1 is completely redundant from

the system, not affecting the criterion function and thus completely unidentified.

Furthermore, assume that parameters θ2 and θ3 affect criterion function importantly,

yet are perfectly positively collinear and enter the system as (θ2 + θ3). Finally let

θ4, θ5 enter the system as (θ4 − θ5), while θi for i = {6, . . . , n} are well identified
and unrelated to θ1,...,5. The nullspace given by V2 is then as follows

V2 =



1 0 0

0 −s 0

0 s 0

0 0 w

0 0 w
...
...
...

0 0 0


. (15)

We have three obvious identification patterns. First, for θ1 we see that first

column of V2 suggest that the parameter is strictly unrelated to other parameters

and that it is completely unidentified, since it is fully mapped to nullspace. It is

not identified due to lack of influence. The second column of V2 implies perfect

dependency between the two parameters, while indicating no similarity of these on

the criterion function to other parameters. An identical increase in one parameter

together with identical decrease in the other does not affect anything, trivially. The

third pattern is obvious.

Thus we need to adopt three restrictions, respecting the structure of V2 in order

to make the system identified in a lower-dimensional space K, smaller by three di-
mensions. Thus we must restrict θ1 to a particular value and at least one element

from (θ2, θ3), (θ4, θ5) pairs. Fixing e.g. θ1,4,5 obviously does not solve the identifi-

cation problem.

When the problem is the selection of a subset of variables to restrict, the goal

is to leave those close to orthogonal with others, so that the conditioning number

of the sub-problem is maximized. Bellow we introduce a method based on the QR

with column-pivoting decomposition of V ′
1 which delivers a sorted list of parameters

(columns) that are as much independent as possible given the original problem.
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More complex patterns For truly rank-deficient problems (non-identification)
the properties of the nullspace of T can be traced into very detail. The dimension

of the nullspace (nullity) equals to the number of free parameters, corresponding to

non-pivotal columns of the matrix. Working out full details analytically is always

possible, yet gets more difficult with increased dimension.

The procedure is as follows – (i) identify basic and free parameters of the model,

(ii) construct the solutions by setting each free parameter to unity and others to

zero, one by one. The free parameters are the easily determined by the inspection

of row Echelon form.

For large dimensional parameter spaces the inspection of fully unidentified and

weakly identified patterns can be facilitated by plots of vi’s so the spatial patterns

and strength of dependence can be checked, as we demonstrate in next section.

Also our experience with having a simple program that produces list of unidentified

parameters and those weakly identified proved to be useful.

3 Identification Strength

This section discusses the case where all parameters are identified, yet they may be

weakly identified in the sense that their individual impact on the criterion function

is very small or there are some linear combinations of parameters very close to

linear dependence. Again the SVD with its properties is the ideal tool for analyzing

the strength of parameters identification – finding close-linear combinations, sorting

them according to their importance and selecting a subset of parameters (columns)

with maximal linear independence.

At this stage we have determined whether there is some clear-cut identification

problem embodied in our linear mapping T by calculating the rank of the matrix

and isolating basis vectors for the nullspace to uncover the cause of the trouble.

The computational task of rank determination is however difficult since compu-

ters calculations do not operate under ideal precision. A singular values thus may

be close to zero, but not a true zero. Luckily again the SVD is an extremely valuable

tool for determination of the numerical rank of a matrix, see e.g. Golub and van

Loan (1996) or Higham (1996).

Let us use the label approximate nullspace for the nullspace of the linear map

for the basis associated with set of singular values considered as small by the re-

searcher. In what follows we show how to explore approximate nullspace, how to

interpret results from the SVD in terms of weak identification and, finally, provide

an algorithm for selection of subset of parameters to be estimated.
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3.1 Near collinearity

The problem of a near linear dependence or a near singularity is crucial for strength

of identification. It is well known that the linearly independent vectors (spaces)

are orthogonal, i.e. perpendicular. The cosine of angle of two vectors is equal to

correlation of two vectors and closely related to their dot product –

corr(x, y) = cosα =
x′y

(‖x‖‖y‖)
. (16)

Basically what SVD does is to make similar things more similar and dissimilarities

become more dissimilar and decorrelates the identification patterns, without using a

‘correlation’ analysis. The collinearity can be among multiple columns, hence biva-

riate relationships or correlations are only necessary, not sufficient signs of rank de-

ficiency or weak identification. Further, recall that dim range(T ) = dim range(T ′),

so rows are considered as well.

For multiple columns of the (m× n) matrix T = [t1 . . . tn] the full collinearity is

present in the case

n∑
i=1

γiti = 0, (17)

that is – the linear combinations of columns is zero for {γi}n
i=1 which are not all

zero. Often, we do not have perfect collinearity, but only strong collinearity. As we

repeatedly point out, it would be useful to find out the linear dependencies that are

sorted out according to their distance to zero.

That is, basically, what SVD delivers. Note that since T = UΣV ′ we have for

j ∈ [1, p], p = min{m,n} and in our case p = n, and Tvi = σiui where vi, ui are of

unit length. For σi → 0 it is clear that σiui → 0 which implies that Tvi → 0. Now
we clearly need to adopt again the column-view of the operation to see that

Tvi = [t1, . . . , tn]vi =
n∑

k=1

tkvk,i → 0 and ‖Tvi‖= σi. (18)

The elements of each right singular vector vi associated with σi determine the co-

efficients γk determining the combination closest to zero, i.e. closest to collinearity.

For important patterns of multicollinearity most of γk coefficients go fast towards

zero. Since we have ‖Tvi‖= σi we can re-normalize coefficients in the linear form and

express this as norm of residual, where εi,k ≡ tk−(γ̂1t1+ · · ·+ γ̂k−1tk−1+ γ̂k+1tk+1+

· · ·+ γ̂ntn) and ‖εk,i‖= σi/|γk|. For perfect collinearity the linear combination atta-
ins zero norm of the error and thus multiple correlation coefficient between tk and

the rest of selected vectors is unity in that case. In other cases, the SVD produces

linear combinations whose coefficients are not coincident with those obtained from

13



multiple correlation coefficient, but always less or equal.

The use of the SVD is closely related to principal components analysis (PCA).

The identification of identification patterns can thus be regarded also as indicating

principal components of the Information matrix if this is the case.

Scaling of the Problem When analyzing the matrix T or R(θ) using singular

value decomposition, the scaling of the matrix matters for the strength of identifi-

cation analysis. Clearly it does not matter for detecting strict linear combinations

since these are immune to rescaling. SVD is however dependent on scaling and thus

rescaling of columns is often advisable if units of parameter differ greatly. This may

sometimes be the case with DSGE models, yet the situation is not extreme.

For analyzing linear map of structural to reduced form parameters T rescaling of

columns to have equal length is advisable. A common scaling is also by the absolute

values of individual parameters, e.g. by Γ = [|θ1|, . . . , |θn|] and ΓTΓ. In case of
R(θ) one may decide to rescale to Rr(θ) = Γ−1/2R(θ)Γ−1/2 where Γ = diagR(θ)

and thus both row and column scaling is carried out. Obviously, the rescaling using

variances from the Information matrix is feasible only after perfect linear collinearity

is extracted from the system.

The condition number is invariant to multiplication of the matrix by a constant

– note that in case of determinant opposite is the truth.5 The condition number is

however not invariant to the rescaling of individual columns. Partition columns of

A as A = [A1 αak] , where ak is one column and α is scalar, then by letting α → 0
the condition number κ(A)→∞, an effect referred to as artificial ill-conditioning.
Thus large differences in scaling of the columns make condition numbers large.

The question is what is thus the most ‘natural’ scaling for the problem. Our view

is that either no scaling or scaling by the absolute value of parameters – parameters

as used in the estimation. The reason is that in case of searching for extreme of the

criterion function during the estimation a gradient-based method rely on the score

vector and its relation to SVD of the Hessian. The information embodied in the

SVD can be also successfully used to enhance the optimization routine.

To complicate things a little bit more, one must be aware that by appropriate

rescaling the structure of V2 changes, which for non-precise calculation is an issue. It

may be not sufficient always to inspect the structure of V2, since for any nonsingular

matrix A we have XV2A = 0 with altered zero structure of linear dependency, so

the problem should be put into linear transformation invariant setup, see Belsley

and Klema (1974), where inspection of G ≡ −V22V
−1
21 is analyzed.

5Although zero determinant implies linear dependence, the use of determinants for the purpose is
numerically very unstable and also a small value of determinant has nothing to do with near collinearity.
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Conditioning of the Problem It is a standard result in computation to check

for conditioning of a matrix, which –simply put– determines sensitivity of the pro-

blem Tθ = τ to small variations in T and τ . Ill-conditioned problems display ex-

treme sensitivity. Condition number is a distance to singularity, nearness of trouble,

and the condition number κ equals to ratio of largest to smallest singular value of

the linear map matrix.6 The ratio of the first and the i-th singular value is called

condition index. The steepness of profile of sorted singular values conveys a lot of

information about the decay of identifiability. For singular problems κ → ∞, see
e.g. Golub and van Loan (1996) or a lucid treatment in Higham (1996), inter alia.

3.2 Parameter subset selection

It would be rather desirable to find a set of k individual parameters out of n, which

are the best identified. Those n − k are then restricted in a preferred way. So how

should one choose them?

Say we know we have linearly dependent (or collinear) columns of the matrix,

whose columns correspond to structural parameters. Let us assume that the nullity

of the map is one – hence, we need to eliminate one parameter. It turns out that it

often may be easier to find what parameters to retain in the model, than determine

those to be discarded. We would like to keep parameters corresponding to set of

columns that are as much as possible independent, i.e. that minimize the condition

number – given a particular scaling, which is important.

To find the set of k columns to retain, where k ≤ r one might experiment and

iterate on orderings to get A = [A1 A2], which is our new column-partition of

A so that condition number of A1 is as small as possible. Interestingly there are

algebraic procedures that avoid iteration and deliver plausible results. We follow

Golub, Klema and Stewart (1976) as an example of well-established and straight-

forward procedure to produce ‘enough’ linearly independent columns of the matrix

by manipulating its row-space.7

ALGORITHM
6At this stage, we note some details on implementation. First, the conditioning of the problem is norm-

dependent, our statements relates to 2-norm. Calculating the SVD in, for instance, Matlab by Mathworks
uses the command [U S V] = svd(A). Further, if you check the rank of the matrix, then again SVD is
used and the smallest non-zero singular value is checked with entered tolerance, default tolerance being
related to machine ε. Furthermore when the condition number is checked for (deafult) 2-norm the SVD
is used again! Hence, once rank conditions are involved the costs with computing an SVD are paid, so
why not to use the ‘full package’ then.
7The problem of subset selection is well-known in linear algebra and computer science. Given a matrix

A ∈ Rm×n and positive k, we want to choose k columns of A forming a matrix B ∈ Rm×k such that
the residual ‖A − BB+A‖ξ is minimized given the combination nk possibilities and ξ is either spectral
or Frobenius norm. A+ denotes Moore-Penrose generalized inverse. There are both deterministic and
randomized algorithms for this difficult problem. We follow one of the algorithms that belongs to the
oldest, most straightforward, deterministic and with good empirical behavior.
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1. Compute SVD of the matrix T = UΣV ′ and determine k components, para-

meters that become the new free parameters. Feasible choice of k is k ≤ r =

rank(T ).

2. Calculate rank-revealing QR factorization with column-pivoting8

V ′
1P = QR, (19)

where V ′
1 is (k ×m) matrix in V ′ = [V ′

1 V2]′ and P is the permutation matrix.

3. Choose the subset of k components of the parameter set θ as θ̂ = P ′θ.

Note the algorithm suggests what parameters retain and what parameters not, yet

these groups are not necessarily sorted. However we suggest a heuristic procedure

for parameter sorting in such a way that the condition number is monotonically

decreasing. The procedure runs backwards. First, select k = r columns of the matrix

that are regular. Always partition the matrix into two groups where only one vector

is not to be selected. Reduce the matrix and proceed with the selected columns in

the same way until the number of columns is reduced to the last one. In case of

symmetric matrices one can eliminate each time a corresponding row and column,

hence ignore a particular parameter from the system, treating it as fixed. This

heuristic backward procedure results into unique ordering, though its results are

very sensitive to scaling of the matrix under investigation.

The permutation matrix P permutes the columns of matrix T in such a way that

TP = [T1 T2], where T1 is (m×k) and σi(T1) ≤ σi(T1), where σk(.) denotes the i-th

largest singular value. This method is due to Golub et al. (1976) and more complex

modifications of the algorithm exist. QR decomposition with column-pivoting, where

the rank-deficiency is treated by taking QR decomposition of column-permuted

matrix, see e.g. Golub and van Loan (1996).

The logic of the method works as follows. Imagine taking an SVD of column-

permuted T , i.e.

TP = [T1 T2] = U

[
Σ1 0

0 Σ2

]
Ṽ ′ = U

[
Σ1 0

0 Σ2

] [
Ṽ ′
11 Ṽ ′

21

Ṽ ′
12 Ṽ ′

22

]
(20)

and being lucky so that Ṽ ′ = I, where I is identity matrix. Then the ‘important

columns’ become T1 = U [Σ1 ; 0] and σi(T1) = σi(T ) for 1 ≤ i ≤ k. If we are not

as lucky, then V11 becomes the key player here (which is obvious for Σ2 = 0) and

Golub et al. (1976) prove that the largest singular value of T1 is between lower and

8In Matlab the command [q r p] = qr(A) delivers QR with column pivoting with the permutation
matrix P.
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upper bonds given by

σk(T )

‖Ṽ −1
11 ‖

≤ σk(T1) ≤ σk(T ). (21)

So having Ṽ11 well-conditioned as much as possible is important. Yet note that the

SVD is decomposition of column-permuted matrix T , hence Ṽ = V P and thus

column permutation matrix P may be chosen so that Ṽ11 is well-conditioned. This

is achieved by the QR column-pivoting factorization of the H ≡ [V ′
11 V ′

21] from

T = UΣV as Q′HP = [R11 R2] where well-conditioned R11 is upper triangular

and since multiplication by ortogonal matrix preserves norms ‖Ṽ −1
11 ‖ = ‖R11‖. How

small can ‖Ṽ −1
11 ‖ actually be can be determined from properties of V and ‖Ṽ

−1
11 ‖ ≤√

1 + k(n− k) if |detṼ11| is maximal.

The singular value decomposition itself is not a tool for subset selection or spar-

sity enhancement, but it can be made a part of the procedure. It decomposes a

matrix A into a layers, sum of p matrices of rank one. This is the principle of

principle components analysis, which is closely related to singular and eigenvalue

decompositions and, the procedures discussed in the paper may be treated as as

principal component analysis of the identification problem.

Graphical investigation One can –and we find it very useful– explore identi-

fication patterns graphically. We produce plots (‘heat maps’) of individual identifi-

cation patterns embodied in vi so that we plot viv
′
i matrix with individual elements

values represented by a particular color on a scale. Plotting the vi and its associated

singular value often allows quick inspection of parameters involved in non- or weak

identification. Obviously one can group vis or plot the whole nullspace.

3.3 The problem of correlation measures

Correlations measures may not be always reliable measures of weak identification

and so this section is devoted to issues related to using correlation measures as tools

to detect multicollinearity and thus as measures to detect identification problems.

The discussion uses theoretical arguments, a numerical example and makes use of

some results in Golub and van Loan (1996), Belsley and Klema (1974) and Belsley

et al. (1980).

The use of correlation as a measure of collinearity is very intuitive, since the

correlation of two vector amounts to a cosine of the angle of these vectors in n

dimensional space. As the bivariate correlation ρi,j gets closer to ±1 the vectors are
becoming more and more collinear.

However, the singularity may results from not only two, but more vectors invol-

ved in a linear combination. In this case one may find very low bivariate correlations
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among vectors, while the matrix is effectively singular – as easily detected using the

SVD. An intuitive solution to the problem is then a coefficient of multiple corre-

lation.

Multiple correlation coefficient (Anderson 2003) is defined as the maximum

correlation between xi and the linear combination αX, where X is appropriate

matrix and α is a vector. To get the maximum correlation, the vector α is formed

by projection coefficients. Anderson (2003, pp.38, 145) also provides several useful

formulas for calculating the multiple correlation coefficient. For instance it can be

shown that for covariance matrix S = [sij ] the multiple regression coefficient for the

first-left vector x1 with respect to others can be expressed using formula

1−R2i =
|S|

s11|S22|
, (22)

where |.| denotes determinant. As we have already mentioned, determinant is extre-
mely unreliable measure of collinearity, yet if it is zero R21 → 1 and one is tempted
to carry out detailed limit analysis of the ratio in the formula. The problem is that

small, but nonzero determinant may have nothing to do with collinearity. Another

venue must be taken.

Importantly Marquardt (1970) demonstrates that when R is correlation matrix,

then the diagonal elements of R−1 contains the variance inflation factors, (VIF),

where VIFi = 1/(1−R2i ).When the VIF is large the multiple correlation coefficient

increases. Assume now that matrix B has normalized columns (in a ‘regression

form’) so that R = B′B is the correlation matrix and thus diagonal of (B′B)−1

features the VIFs. Taking the SVD we get B = UΣV ′ and thus R−1 = V Σ−2V ′, so

that the individual VIFs can be expressed as

VIFk =
n∑

j=1

v2kj

σ2j
=

n∑
j=1

(
vkj

σj

)2
, (23)

where σk and vk are singular values and right-singular vectors of B. When there is

not perfect-collinearity, the elements of vk are not true zeros, though some of the

may be small. Note that for each VIFk all singular values are used – including those

potentially very small in case of near collinearity. Then we have that for some r-th

element

σr → 0 and vkr 6= 0 VIFk →∞ Rk → 1. (24)

A single near-collinear relationship can thus blow-off all variance inflation fac-

tors and thus all multiple correlation coefficients among vectors in the matrix.

Further, Belsley et al. (1980) demonstrate that this behavior is shared by all bi-

variate correlations and thus partial correlation coefficients.
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Numerical example To demonstrate these facts in a simple setup, we choose

to inspect matrix B of the form

B = [B1 b5] =


1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.20

0.00 0.00 1.00 0.00 0.40

0.00 0.00 0.00 1.00 −0.70
0.00 0.00 0.00 0.00 0.00

 , (25)

where the first four columns are formed as B1 = I4 + E , where I4 is identity and

E draw from Gaussian distribution with almost zero variance and b5 = 0.2b2 +

0.4b3− 0.7b4+ ε, so that the matrix is not singular and features one nearly collinear

relationship where three columns are involved.

The resulting correlation matrix, VIFs and R2i coefficients are then

R =


1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.24

0.00 0.00 1.00 0.00 0.48

0.00 0.00 0.00 1.00 −0.84
0.00 0.24 0.48 −0.84 1.00

 , VIF = 1012


0.00

0.40

1.60

4.92

6.93

 R21:5 =


0.9679

0.8501

0.9923

0.8290

0.9941

 . (26)

The matrix is not extremely badly behaved since the few first columns are almost

mutually orthogonal and there is only one small singular value, since diag(Σ) =

[1.3 1 1 1 2.42× 10−7].

The facts above may perhaps partly explain why multiple correlation coefficients

in Iskrev (2009a) for the model of Smets and Wouters (2007) are all but three, out

of 39, larger than 0.99 for all parameter combinations since few truly unidentified

parameters are kept in the set of regressors.

4 Identification Examples

We demonstrate the method explained above using three examples of well-established

models – a small-scale model by An and Schorfheide (2006), a medium-scale model

by Smets and Wouters (2007) and –in the appendix– a small open economy model

as popularised by Monacelli (2003) and Justiniano and Preston (2004).

We have also used the method for other DSGE models, for instance, in Andrle,

Hlédik, Kameník and Vlček (2007–2008) or Steinbach, Mulhoe and Smit (2009)9 to

identify the strength of identification and identification patterns.10

9The author thanks Research Dept. of the South African Reserve Bank for warm hospitality during
November 2008.
10For computations we have used the IRIS-Toolbox for Matlab by Jaromír Beneš, an objected-oriented
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4.1 An-Schorfheide (2006) Model

The log-linear version of the model by An and Schorfheide (2006) consists essentially

of a closed economy IS curve without lagged term of output, a forward-looking

Phillips curve,a consumption identity and an interest rate rule with smoothing,

contemporaneous effect of inflation and output growth. The model features three

measurement variables – output growth, inflation and nominal interest rates. There

are three stochastic shocks – exogenous government spending, technology shock and

uncorrelated monetary policy innovation.

We analyze only local identification at coefficient values from the first data ge-

nerating process (DGP1). Following An and Schorfheide (2006) we define reduced

form parameter κ for the slope of the Phillips curve, since it individual compo-

nents are not identified and we would trivially obtain rank-deficient Information

matrix with right-singular vectors pointing to these components, associated with

zero singular values. Contrary to authors we do not analyze the intercept parame-

ters γ, rA, π in measurement equation and focus only on the set of ten parameters

θ = {τ, κ, φ1, φ2, ρR, ρg, ρz, σR, σg, σz}, denoting the coefficient of risk aversion, slope
of the Phillips curve, interest rate rule weights on inflation and output growth, in-

terest rate smoothing parameter and persistence and standard deviations of exoge-

nous stochastic processes. For computing Information matrix we use the T = 80.

observations.

An and Schorfheide (2006, pp. 19–20) comment that the visual inspection of

prior and posterior distributions of their estimation indicate that the sample con-

tains little information on the risk-aversion coefficient τ and policy rule coefficients

φ1, φ2, whereas data are informative about the slope of the Phillips curve κ and also

autocorrelation and standard deviation of stochastic shocks.

Inspection of log-likelihood sensitivities with respect to individual parameters11,

(An and Schorfheide 2006, Fig. 14), indicates that the log-likelihood is rather flat

with respect to τ, ρg and φ2 in the neighbourhood of the true parametrization. On

the other hand the curvature of σR, σg, σz or ρR is reasonable. Authors provide the

sensitivity with respect to components of κ, which are not flat, though it is the

linear dependence that prevents the identification of these parameters.

On the basis of An and Schorfheide (2006) we would expect the methods presen-

ted in this paper to indicate good local identification of the slope of the Phillips curve

κ, standard deviations of stochastic shocks and weaker identification of risk-aversion

parameter τ and interest rate rule parameters φ1, φ2. The issue is how the possi-

ble interaction among parameters affects the information from the log-likelihood

curvature with respect to individual parameters.

toolbox for developing and using DSGE models – www.iris-toolbox.com.
11This is a version of the often used ‘happy faces’ plot.
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We analyze the Information matrix without any scaling. It is of full rank and

identification patterns (i.e. righ-singular vectors) plots are at Fig. 1. Since the Infor-

mation matrix is not scaled the condition number is large and the profile of condition

indices sharply drops after the sixth dimension as can be easily seen from singular

values of identification patterns.

The plots seem to support the results of An and Schorfheide (2006) that para-

meters κ, σR,z,g are (relatively) well identified. Another well identified parameter is

interest rate smoothing parameter ρR, though we can observe that the parameter

interacts with φ2 and τ , which is intuitive. On the other hand the persistence of

the government spending is less identified, though not due to collinearity but due

to its small impact on the likelihood, i.e. the likelihood is flat with respect to this

parameter.

The least identified parameter seems to be the risk-aversion coefficient both due

to its small impact on the likelihood and partial confounding with φ1, the interest

rate rule weight on inflation as can be viewed from the identification patterns 9 and

10. From the economic point of view the higher τ decreases the impact of interest

rate changes on the output gap in the IS curve, which is the driving force of the

inflation. To stabilize inflation with lower τ the policy authority needs to increase

the weight on inflation φ1 in the interest rate reaction function.

The next step is the application of the heuristic procedure to ‘order’ the para-

meters in terms of their identifiability. More precisely, we carry on repeated subset-

selection problem using the rank-revealing QR factorization as indicated above.

The backward-pass algorithm delivers the following vector of sorted coefficients

θ̃ = {κ, σR, σz, σg, ρR, ρg, φ2, ρz, φ1, τ}, which seems to be broadly in line with the
identification patterns and the discussion in An and Schorfheide (2006).

4.2 Smets-Wouters (2007) Model

To test the method on the model by Smets and Wouters (2007) we use the model

code and prior and posterior mode made public by authors. However our implemen-

tation of the model may differ in minor details or by our omissions.

We inspect the FIM using T = 200 and both in its unscaled version and in its

version scaled by parameter size. We also provide a correlation-version of the FIM

–after eliminating singularity– and calculate variance inflation factors (VIFs) and

corresponding righ-singular vectors pointing into space associated with large com-

ponents of VIFs. The FIM was calculated numerically, so it is sensitive to numerical

inaccuracies. In the two-step numerical differentiation the differentiation step re-

flects the absolute value of the parameter, e.g. the numerical step for adjustment

costs is larger than for standard deviation of monetary policy shock.
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Fig. 1: Identification pattern – (An and Schorfheide, 2006)
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Tab. 1: Parameter subset selection – SW-07 model

1 ρw 11 ξp 21 σc 31 α
2 γ̄ 12 σeg 22 r∆y 32 σl

3 ρp 13 σr 23 cgy 33 ρr

4 ρg 14 σeb 24 µp 34 π̄
5 ρ 15 σea 25 ϕ 35 l̄
6 ρa 16 ξw 26 ψ
7 µw 17 σw 27 ιw
8 λ 18 rπ 28 ry

9 ρI 19 σp 29 ρb

10 Φ 20 σI 30 ιp

We analyze only those parameters actually estimated by Smets and Wouters

(2007), hence the depreciation rate δ, share of government spending gy, steady-

state labor market markup λw and Kimbal aggregator parameters εp and εw are

treated as fixed. The last three parameters lead otherwise to rank-defficiency due

to their collinearity with ξw and ξp, Calvo parameters.

By inspection of ‘identification patterns’ we can see very complex interactions

among virtually all parameters. That implies that it would be difficult and insuffici-

ent to rely only on bivariate correlations of coefficients and that multiple correlation

coefficients (and thus variance inflation factors) would be high in general.

Notable exceptions with none or smaller interactions, clearly tractable to corre-

sponding right-singular vectors, are l̄, π̄ and γ̄ which determine steady state level

of hours worked, inflation and trend growth rate, and others are ρg, σb, σr or ρ, de-

termining auto-regression of exogenous govt. spending, variance of preference and

monetary policy shock or interest rate smoothing parameter, to smaller degree.

With little interactions the first two parameters are very poorly identified, whereas

the the second group belongs to rather well identified parameters, judged using the

analysis of singular values.

The identification patterns of most other parameters are rather complex and

would require lengthy analysis, which we attempt to by-pass by application of sub-

set selection algorithm to unscaled and parameter size scaled FIM. The results of

parameter ranking are listed in Tab. 1 for the FIM scaled by the relative size of

parameters.

It seems that weakly identified parameters are l̄, π̄ determining the steady state,

i.e. constant terms, and autocorrelation of monetary policy shocks ρr, followed by σl

and α, determining Frisch labor elasticity and the share of capital in the production

of intermediate goods. Calvo parameters for inflation and wages ξp and ξw do not
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belong to best identified parameters, but seem identified better than indexation pa-

rameters ιp and ιw. The parameter affecting intertemporal elasticity of substitution

σc also does not belong to the best identified parameters.

Among the best identifiable parameters one can find autoregression coefficient

of wage and inflation cost-push shocks ρw, ρp, government exogenous process persi-

stence ρg, interest rate smoothing parameter ρ and persistence of technology shock

ρa, habit formation parameter λ or investment specific shock persistence ρI . In our

implementation also the trend parameter γ̄ seems to be well identified, we have

excluded β.12

Concerning parameters in the interest rate rule the smoothing parameter ρ is

best identified, followed by inflation coefficient rπ, output-gap difference r∆y and

the least identified coefficient on level of the output gap ry.

The identification of the Smets and Wouters (2007) model is explored in detail in

Iskrev (2008) and Iskrev (2009a), where the first paper – among other measures– uses

bivariate correlation analysis and the second multiple correlation coefficient analysis.

The conclusions from the set of extremely large multiple correlation analysis, most

above 0.99, point towards rather poorly identified coefficients of the model and

presence of large structural redundance of the model’s features. However opposed

to Smets and Wouters (2007) or our analysis author allows for λw, extremely poorly

identified parameter, to enter these multiple correlation coefficients. Our analysis

suggests that it is few of close collinearities that cause multiple correlation coefficient

to blow-off.

12As for implementation of the model γ̄ parameter is rescaled differently than in Smets and Wouters
(2007) and thus results may be affected.
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5 Conclusion

This paper demonstrates both simple and potentially powerful method for exploring

the ‘identification patterns’ of DSGE models. The identification patterns are associ-

ated with the nullspace of a particular linear map investigated. The binary problem

of either identification or the strength of the identification is showed to be natu-

rally analyzed with the conditioning of the map, which also sorts the identification

patterns in terms of their strength.

The method is able to indicate identified and weakly identified patterns of the

parameter space, while suggesting whether this is due to lack of influence of the

parameter or its interactions with other parameters. The method seems very useful

and can be used for a-priori investigation of the model identification before the

model is estimated at all. The local nature of the method can make a step towards

global identification search using simple pseudo- or random simulation schemes or

at particular border parametrisations. The method is not dependent on a particular

estimation method.

The location of the unidentified subspace of the parameter space, sorting of

identification patterns with respect to their strength and determination of the rank

condition of the identification problem – for all these tasks we demonstrate that

singular value decomposition of the matrix of the linear map is a strong candidate.

In contrast to an eigenvalue decomposition the singular value decomposition may

be applied also to only rectangular, not square, matrices of Jacobians (linear maps)

from structural to reduced form parameters to analyze in-depth the rank condition

of identification.

We also suggest a heuristic method for ordering the parameter vector in terms

of individual element’s ‘identifiability’ by carrying out a repeated sub-set selection

problem using rank revealing factorizations, which takes into account both flatness

of the criterion function and parameter confounding.
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APPENDIX – Basic SOE Model

The model is a variant of Monacelli (2003) and Justiniano and Preston (2004) as described
also in Steinbach et al. (2009). The only modification to Steinbach et al. (2009) is adding
possibility of partial price indexation for imported prices πf,t and that we simplified the
foreign block – inflation, output and interest rates– using a simple VAR specification –
consequently, we do not estimate any of these autoregressive parameters or variances. The
results for ‘home parameters’ are not affected by this change. This paper is not an empirical
and this section is just an examples section, so we do not scrutinize the model into details,
just indicate the use of the method.

Likelihood The parameter space then consists of 30 structural parameters, including
standard deviations. In terms of estimation method we focus on inspecting the properties of
the log-likelihood of the model, so we make use of full-information method and our results
are thus relevant even for other method of estimations. We do not estimate the model,
rather we carry out a-priori analysis of the identification, since identification is the feature
of the model, not of data. For computing the Information matrix, that i.s. expected value
of the Hessian of the log-likelihood we sample from the prior-mode of the model, so no real
data are used.

We set identical sample length for time and frequency domain likelihood function. We
mercifully choose T = 200 for our experiments. We start the evaluation of the Information
matrix at the prior mode of the model.

Naturally the analysis –except of truly linear dependent combinations– is not scale
invariant. We have thus also carried out the analysis for (i) unscaled Fisher information
matrix (FIM), (ii) FIM scaled by the size of the parameters and (iii) correlation form of
FIM – after singularity has been eliminated. We do not in this case normalize the FIM so
all columns have unit norm, since we do not consider this plausible in case of identification
analysis.

Identification Patterns After calculating the Information matrix, we find out a
singular value decomposition to find subspaces associated with the operator implied by
the matrix. There is no absolute zero – we didn’t let any parameter just float in the air.
However we evaluate the rank of the matrix –i.e. dimension of the column space– to be
only r = 26, which implies four very problematic identification patterns. Fig. 2 depicts the
evolution of singular values and log-singular values of the model. The 24-th singular value
is still 9.4094e−5. The shape of the singular values profile also suggest a significant portion
weak identification resulting from the model structure.

Let’s proceed to the inspection of the nullspace of the map and associated four identifi-
cation patterns. Note that since there is no true zero, the patterns are, as advertised, sorted
in order of their problemacy. After the nullspace we may inspect those weakly and those
strongly identified portions of the parameter space – the approximate nullspace. We have
checked that the parameters identified by the procedure above result into their posterior
distribution equal to their prior distribution in Bayesian setting.

The first hopelessly unidentified pattern consist of ξw (xi empl), denoting the CES pa-
rameter for labor packers that subsequently appears in the wage Phillips curve. The pattern
shows it is not interacting with anything, but it does not contribute to anything. This should
not come as a surprise. The corresponding vector includes 0.99 at the location of the para-
meter in θ and zeros or very little numbers (−0.02 for θw, the wage Calvo parameter).The
second identification pattern points to αw (alpha w), the indexation parameter and the
pattern is similar to previous, since the parameter is not interacting with others.

As an example we plot the v associated with the pattern in Fig. 3 to demonstrate the
logic and the intuitive nature of our plots. The white square is associated with αw, all
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Fig. 2: Singular values – small open economy model
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Fig. 3: Identification pattern – SOE model
Identification pattern no. 29, s−val.  4.1127e−016
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other coefficients are corresponding to zero. The colors help to eye-ball patterns. Though
all calculations are precise and numeric, the method of interocular trauma is well-known
to work to understand patterns. This just confirms the structure of the vector as described
above.

The third pattern is more interesting, since it points out an interaction of parameters,
namely of standard deviation of innovations to cost-push shock σp into home prices Phillips
curve. The standard deviation of this shock is not identified and displays small interaction
with standard deviation of technology shock σa. Obviously, the main trouble is the σp and
we can spot traces of σa, yet note the positioning of the zero-point. Black-white pattern
does not necessarilly mean perfectly opposite relationship.

One could go on with the identification patterns to find out that the problematic para-
meters are – the indexation param. of wages αw, the packers labor demand param. ξw, the
standard deviation of cost-push shock σp, the Calvo parameter for wages θw, the standard
deviation of wage cost-push shock σw, the autocorrelation of the cost-push shock to home
prices ρp, the standard deviation of foreign risk-premium shock σ?

µ, the labor supply Frisch
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Tab. 2: Parameter subset selection – SOE model

order A B order A B

1 rho i rho i 16 delta h std eps a
2 theta h theta h 17 rho mpolicy delta h
3 rho mud std omega y 18 sigma std eps mpolicy
4 std omega y std omega i 19 rho eta w rho eta w
5 std omega i rho mud 20 std eps mud gamma
6 rho a rho habit 21 std eps a std eps mud
7 gamma phi pie 22 delta f delta f
8 std eps mpolicy rho a 23 varphi varphi
9 phi y std omega pie 24 std eps mud star rho eta p
10 rho habit rho mpolicy 25 rho eta p std eps mud star
11 std omega pie rho mud star 26 std eps eta w std eps eta w
12 rho mud star eta 27 std eps eta p std eps eta p
13 eta theta f 28 alpha w theta w
14 phi pie sigma 29 theta w alpha w
15 theta f phi y 30 xi empl xi empl

elasticity ϕ, a typical weakly identified parameter, etc. On the other hand very well identi-
fied parameters, as determined by the structure of the column space, is the autocorrelation
of the nominal interest rate in the interest rule, ρr or home prices Calvo parameter θh both
with almost no interactions with other parameters.

Subset selection of parameters To have a clearer view on the selection of para-
meters, we calculate the ordering of parameters in terms of their strengh of influence and
collineraity by use of the algorithm introduced above. The sorting algorithm relied on k
successive column-partitioning and column intersections in each step. The results for uns-
caled FIM and scaling by the absolute size of the parameters produce very similar, though
not identical, results. Importantly those hopelessly identified parameters are sorted always
right.

We provide the parameter ordering in the Tab. 2, where the case A stands for FIM
without any scaling and B is the FIM scaled by parameter size. From inspection of the
table the method suggests that most reliably estimated parameters should be ρi (rho i),
Taylor rule smoothing parameter, home country Calvo parameter, (theta h), autoregression
parameter for home country interest risk-premium shock (rho mud), for instance. Surprisin-
gly highly positioned is the interest rate rule coefficient of inflation, φπ (phi pi), which in
Steinbach et al. (2009) seems not to be identified too well and in general it is difficult to
estimate in many models. The parameters denoting variance of measurement errors for out-
put and interest rates σy,i (std omega y,i) would be also very well identified, though they
are not estimated. Next well identified parameters are habit formation, ρhabit (rho habit)
and technology shock persistence ρa (rho a).
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