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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are nowadays regarded as the benchmark

business cycles models for policy analysis and forecasting, both in academic and policy institutions.

Their popularity stems from the attractive theoretical aspects and the good empirical performance

they display, and from the useful forecasting properties they possess in the medium run, in partic-

ular, relative to single equation structural models or multiple equations time series speci�cations.

Existing business cycle models are, however, not problem free. Theoretically, many important

features are modelled as black-box mechanisms; ad-hoc frictions are routinely added to match im-

portant aspects of the data; relevant real world phenomena have no role in standard constructions;

crucial properties are often derived without any reference to parameter or model uncertainty. Em-

pirically, the problems are numerous and varied. For classical estimation, a model is required to be

the data generating process (DGP), up to a set of serially uncorrelated measurement errors. Since

current business cycle models, even in the large scale versions used in policy institutions, fail to

meet such a requirement, it is di¢ cult to credibly entertain structurally estimated models. This

assumption is unnecessary to derive meaningful posterior distributions. Still, even in a Bayesian

framework, it is hard to interpret misspeci�ed estimates, unless an explicit loss function is consid-

ered (see Schorfheide (2000)). In any case, the inherent misspeci�cation models possess causes the

likelihood function to be poorly behaved, making numerical di¢ culties widespread and Bayesian

estimation strongly dependent on the prior selection. On the other hand, abundant identi�cation

problems (see Canova and Sala (2009) and Canova and Gambetti (forthcoming)) and the severe

mismatch between theoretical and empirical concepts of business cycles (see Canova (2009)) ren-

der structural estimation and policy conclusions generically whimsical. The empirical validation

of business cycle models is also di¢ cult: models impose fragile restrictions on the magnitude of

interesting statistics and evaluation techniques for misspeci�ed, hard to identify models are under-

developed. Those based on classical asymptotic ideas are unsuited and, if we exclude a few notable

cases (Schorfheide and Del Negro (2004) and (2009)), those currently available are computationally

intensive, only permit evaluation relative to a benchmark model, are ill suited when both models

have low posterior probability and focus on statistical �t, rather than the relevance of the eco-

nomic discrepancy. For useful policy experiments, meaningful welfare calculations, and informative

conditional forecasting exercises researchers sorely need techniques which are simple, reproducible,

e¤ective in measuring economic discrepancy and informative about the reasons for its existence.

This paper presents a methodology to validate classes of business cycle models and to select sub-

models in a class. It employs the �exibility of SVAR techniques against model misspeci�cation,

the insights of computational experiments (see e.g. Kydland and Prescott (1996)) and pseudo-

Bayesian predictive analysis (see e.g. Canova (1995)) to design probabilistic measures of �t which
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are informative about the economic relevance of a class of models and can discriminate among

locally alternative DGPs. We take seriously the objection that existing business cycle models

are at best approximations of a portion of the DGP. We are sympathetic to the claim that too

little predictive analysis is typically performed prior to structural estimation and that existing

models may be unsuited for traditional estimation and testing because of speci�cation problems

and identi�cation failures. We also pay attention to the fact that the quantitative restrictions are

typically fragile and design criteria which employ robust qualitative theoretical implications.

The analysis starts from a class of models which has an approximate state space representa-

tion once (log-)linearized around the steady state. We examine the dynamics of the endogenous

variables in response to the disturbances for alternative members of the class using a variety of

parameterizations. While magnitude restrictions depend on speci�cation details, the sign of the

impact responses and, at times, the dynamic shape of the responses are much more robust to para-

meter and speci�cation uncertainty. We use a subset of theoretically robust restrictions to identify

structural disturbances and use the responses of unrestricted variables to construct qualitative and

quantitative measures of economic discrepancy between the class and the data or to select a mem-

ber within the class. The approach is constructive: if the discrepancy is deemed large at any stage

of the evaluation process, the class of models can be respeci�ed and the analysis repeated.

Our methodology has a number of advantages. First, it does not require the true DGP to be a

member of the class of models we consider: we only need that the subset of the robust qualitative

restrictions employed for identi�cation has a counterpart in the data. If this were not the case, our

approach can detect the problem and allow to immediately stop the evaluation process. Second,

our approach does not need the probabilistic structure to be fully speci�ed in order to be operative.

Thus, ad-hoc dynamic additions as well as shock proliferation become fully dispensable (see Kocher-

lakota (2007) for a related argument) Third, by focusing shock identi�cation and model testing on

robust model-based qualitative restrictions, our methodology catches several birds with one stone:

it de-emphasizes the quest for a good calibration; it gives economic content to identi�cation restric-

tions used in SVARs analyses; it shields researchers against speci�cation problems. These aspects

of the methodology should be attractive for applied researchers struggling to evaluate potentially

misspeci�ed models delivering quantitatively weak testable restrictions. Fourth, the approach can

be used in a limited information or full information mode, and has degrees of freedom that can be

used to make shock identi�cation and model testing stronger. Fifth, the procedure requires small

computing power, it is easily reproducible and applicable to several interesting classes of models.

We show that the approach can recover the sign of the impact response of unrestricted vari-

ables to the identi�ed shocks, measure interesting qualitative features of the DGP, and exclude

potentially relevant candidate DGPs with high probability for a variety of structural designs, even

when sample uncertainty exists. Moreover, because the evaluation procedure focuses on qualitative
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rather than quantitative implications of the theory, it delivers reasonable conclusions, even when

the empirical model is incorrectly speci�ed relative to the DGP. Finally, since the emphasis is on

robust restrictions, we can distinguish sub-models in situations where standard approaches fail.

We illustrate with two examples how the methodology can be used to sort the frictions consistent

with the transmission mechanism we observe in the data; to analyze the general relevance of a class

of models; to evaluate the importance of a feature added to an existing class of models; and to get

�estimates�of parameters which are typically non-identi�able when aggregate data and standard

econometric techniques are used. We show, in the class of models popularized by Christiano et al.

(2005) and Smets and Wouters (2003), that the impact response of the real wage to government

spending shocks can be used to discriminate price from wage rigidities in the data and the dynamic

responses of hours to various types of technology shocks employed to evaluate the general quality of

the �t. We demonstrate that price frictions may not be crucial to characterize cyclical �uctuations

in the US and raise doubts about the quality of the approximation provided by this class of models

for the data. We also show, in the class of models with a portion rule-of-thumb agents suggested by

Gali et al. (2007), that the presence of a large number of non-optimizing consumers is insu¢ cient to

make consumption responses to government spending shocks positive and indicate how the robust

restrictions of the class can be employed to measure the sign, the magnitude and the shape of

consumption responses in the data. Since the share of non-optimizing agents needed to quantitative

match the conditional consumption dynamics is unrealistically large, the validity of this class of

models for policy and interpretation exercises is also seriously called into question.

The rest of the paper is organized as follows. Section 2 describes the methodology; section 3

studies the properties of the procedure in a series of controlled experiments. Section 4 evaluates

two standard business cycle models. Section 5 concludes.

2 A sign restriction approach to evaluation

It is our presumption that current business cycle models, while useful to qualitative characterize

conditional dynamics, are still too stylized and feature too many black-box frictions to be taken

seriously, even as an approximation to part of the DGP of the actual data (a point made, with

di¤erent emphasis, also by Chari et al. (2009)). Since this misspeci�cation will not necessarily

vanish completing the probabilistic space of the model with measurement errors, ad-hoc shocks or

arti�cial dynamics, we do not follow the standard approach of �nding parameters that make the

augmented model and the data quantitative �close�and statistically measure the magnitude of the

discrepancy. Instead, we derive a set of dynamic implications, which are qualitatively robust to the

parameterization and to the speci�cation of the model within a class; use some of these implications

to recover structural disturbances in the data and employ others to measure the quality of the
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model�s approximation to the data or to select competing sub-models in the class.

To describe our approach we need some notation. Let F (wst (�); �0(�); �1(�)j�t;M) � F s(�) be

a set of continuous model-based functions, which can be computed conditional on the structural

disturbances �t, using models in the class M. F s(�) could include impulse responses, conditional

cross correlations, distributions of conditional turning points, etc., and depends on the model-

produced series wst (�), where � are the structural parameters, and, possibly, on the parameters

of their VAR representation, where �0(�) is matrix of contemporaneous coe¢ cients and �1(�) the

companion matrix of lagged coe¢ cients. Let F (wt; �0; �1jut) � F (�0) be the corresponding set of

data-based functions, conditional on the reduced form shocks ut and the parameters of the VAR

representation of the data. We assume that wt is a q � 1 vector. We take the classM to be broad

enough to include sub-models with interesting economic features. M could be, e.g., one of the New

Keynesian models used in the literature and the sub-models versions where wage stickiness or price

indexation are shut o¤. The classM is misspeci�ed in the sense that even if there exists a �0 such

that �0 = �0(�0) or �1 = �1(�0) or both, F (wst (�); �0(�0); �1(�0)j�t;M) 6= F (wt; �0; �1jut).
Among all possible F s(�) functions, we restrict attention to the subset ~F s(�) which are ro-

bust: the J1 � 1 vector ~F s1 (�) � ~F s(�) is used for shock identi�cation and the J2 � 1 vec-

tor ~F s2 (�) � ~F s(�) for evaluation purposes, ~F s1 (�) 6= ~F s2 (�). ~F s(�) is termed robust if either

sgn(F s(�1)) = sgn(F s(�2)), or if sgn(F s(�1)jMj) = sgn(F s(�2)jMj), 8 �1; �2 2 [�l; �u], where sgn
is the sign of F s; �l; �u are the upper and lower range of economically reasonable parameter values

andMj 2M. Thus, ~F s1 (�) contains functions whose sign is independent of the sub-model and the

parameterization; ~F s2 (�) contains functions whose sign is independent either of the sub-model and

the parameterization (if the generic �t is evaluated) or of the parameterization (if sub-models are

compared). The economic question to be investigated dictates what ~F s1 (�) and ~F
s
2 (�) will be.

2.1 The algorithm

The evaluation procedure involves �ve steps:

1) Find robust implications of the classM. That is, �nd ~F s(�) and select ~F s1 (�) and ~F
s
2 (�).

2) Use ~F s1 (�) to identify disturbances in the data. That is, �nd the set of �0 that minimizes

I
[sgnF1(wkt ;�0;�1jut)�sgnF1(w

k;s
t ;�0(�);�1(�)j�t;M) 6=0], subject to A0A

0
0 = �u, �0 = A0H, HH 0 = I

where � 2 [�l; �u], I[:] is a counting measure, �u the covariance matrix of reduced form
disturbances, k = 1; 2; : : : q1 < q. If there is no �0 such that 0 � I[:] � �, some � � 0, choose
another set of ~F s1 (�) and, if none remains, stop the evaluation process.

3) Evaluate the performance of the class qualitatively computing (a) Sk1 (M) = 100
N �

I
[sgn ~F2(wkt ;�̂0;�1jut)�sgn ~F s2 (w

k;s
t ;�0(�);�1(�)j�t;M]=0

and /or (b) Sk2 (M) = 100
N �
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I
[shp ~F2(wkt ;�̂0;�1jut)�shp ~F s2 (w

k;s
t ;�0(�);�1(�)j�t;M]=0

, where shp is the dynamic shape of ~F2, �̂0 are

the N values of � obtained in step 2), ~F s2 hold for interesting members ofM, k = q1+1; : : : ; q.

4) If the performance in 3) is satisfactory, quantitatively evaluateM. For example, compute

Pr( ~F s2 (�) � ~F2(�̂0)) 8� 2 [�l; �u] or the degree of overlap between D( ~F s2 (�)) and D( ~F2(�0)),
where the distributions D are obtained randomizing over � and the �0 found in 2)

5) Evaluate sub-models of the class. For example, for h = 1; 2 compute Sk3 (Mh) =
100
N �

I
[sgn ~F2(wkt ;�̂0;�1jut)�sgn ~F s2 (w

k;s
t ;�0(�);�1(�)j�t;Mh]=0

or Sk4 (Mh) =
100
N �

I
[shp ~F2(wkt ;�̂0;�1jut)�shp ~F s2 (w

k;s
t ;�0(�);�1(�)j�t;Mh]=0

and choose theMh that minimizes S(Mh) =PJ2
j=1w

1
jS3j(Mh) +

PJ2
j=1w

2
jS4j(Mh), where

P
j w

1
j +

P
j w

2
j = 1 are chosen weights.

6) If the performance in 3) or 4) is unsatisfactory, choose another class of models or add to

M features that may help to reduce the discrepancy. Otherwise, undertake policy analyses

(welfare analyses, conditional forecasting exercises, etc.) as needed.

In the �rst step we seek implications which are �representative�of the class of models we want

to evaluate. For example, if the sign of the conditional covariations of output and in�ation in

response to monetary policy shocks is unchanged when we vary the structural parameters within

a reasonable range, and this is true for an interesting subset of models inM, we call this a robust

implication. Robustness is not generic: many features are sensitive to the parameterization and

to the type of frictions present in the model. Moreover, since models are misspeci�ed, magnitude

restrictions are unlikely to hold. Hence, the robust implications we consider take the form of sign

restrictions on conditional responses, primarily in the impact period. We focus on conditional

functions as they are more informative than unconditional ones about the features of the classM.

In the second step, we make the class of models and the data share qualitative aspects of their

conditional functions. This step is easily implementable using the approaches of Canova and De

Nicolo�(2002), Uhlig (2005) or Rubio-Ramirez et al. (forthcoming). One can �weakly �or �strongly

�identify disturbances, by imposing a small or a large number of robust restrictions, across shocks

and/or variables. Since standard rank and order conditions are not applicable, how minimal this

set of restrictions should be in general, is discussed below. Contrary to traditional practices, we

derive identi�cation restrictions explicitly from a class of models and employ only robust qualitative

constraints. This way, we construct conditional dynamics without conditioning on any particular

member of the class nor on its parameterization. When the chosen set of restrictions fails to hold in

the data, one would either impose an alternative set of robust restrictions, or, if all are exhausted

and no disturbances with the required properties found, go back to the drawing board and select a

di¤erent class.
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The third step is similar to the one employed in computational experiments where some moments

are used to calibrate the structural parameters; others to check the goodness of the theory. Here

robust sign restrictions are employed to identify structural disturbances; the sign and the shape

of the dynamic responses of unrestricted variables can be used to check the quality of the model�s

approximation to the data. We di¤er from standard practices because, at both stages, we only

consider robust qualitative implications and because evaluation is probabilistic.

When the analysis requires quantitative answers to certain questions, conditional forecasting

exercises or welfare calculations, the quality of the class can be further assessed via Monte Carlo

methods, i.e. using measures of distance between distributions of outcomes (as e.g. Canova (1995)).

The computational costs of this step are minimal since distributions of outcomes in theory are

obtained in step 1), and distributions of data outputs in step 2). Quantitative evaluation is not

a substitute for a qualitative one: classes of models can be easily eliminated and the burden of

evaluation reduced if a qualitative check is performed �rst. Clearly, if the quantitative performance

is unsatisfactory, the selected class should not be used for policy exercises (see also Del Negro and

Schorfheide (2009)).

Researchers are often concerned with the relative likelihood of sub-models in a class di¤ering

in terms of microfundations, frictions, or functional forms. One can compare sub-models using

qualitative devices such as the sign and shape of selected responses to shocks. For example, two

sub-models in a class may produce di¤erent sign for the response of hours to technology shocks.

Once restrictions which are common to the two sub-models are used to identify technological

disturbances, the response of hours to the these shocks could be used to discriminate sub-models.

If sub-models di¤er in a number of implications, a weighted average of counting measures can be

used to select the model with the smaller discrepancy with the data. The weights could be optimally

chosen, but we prefer to let them be free parameters - depending on the problem, one may want to

weight di¤erent functions di¤erently. If robustness is a concern, pseudo-bayesian averaging, where

a scaled version of Skj (Mh); j = 3; 4 is employed as weight, can be used. Candidate sub-models

could be nested and or non-nested: our method works in both setups. However, in the latter case

we need to assume that agents know the economy they live in and only the applied investigator

face model uncertainty.

2.2 Discussion

The procedure is informative about the properties of a class of models and the dimensions of

mismatch with the data. For example, shape di¤erences may suggest what type of ampli�cation

mechanism may be missing and sign di¤erences the frictions/shocks that need to be introduced.

Note that conditional dynamics can be analyzed in response to one or several shocks at a time.

The approach we propose compares favorably to existing approaches for at least two reasons.
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Classical estimation and inference are asymptotically justi�ed under the assumption that the model

is the DGP and Bayesian inference is problematic without a loss function. In addition, both clas-

sical and Bayesian estimation have hard time to deal with the population identi�cation problems

highlighted e.g. in Canova and Sala (2009) making testing di¢ cult (see Del Negro and Schorfheide

(2008)). Both issues are relatively minor in our setup: the use of robust identi�cation restric-

tions shields researchers from model and parameter misspeci�cation; since the mapping between

structural parameters and the coe¢ cients of the decision rule is not used, lack of parameters iden-

ti�cation is less of a problem. Since the set of �0�s in step 2) is not necessarily a singleton, the

procedure recognizes that the relationship between the �i; i = 0; 1 and the �s may not be unique.

SVAR analyses are often criticized because shock identi�cation is not linked to the theory that

it is used to interpret the results (see e.g. Canova and Pina (2005)). Since we employ theory

based robust sign restrictions, such a problem is absent here. A number of authors (see Christiano,

et. al (2006), Fernandez-Villaverde et. al. (2007), Ravenna (2007)), and Chari et. al (2008))

have indicated that another form of subtle misspeci�cation may be present in SVARs. While the

literature has cast this problem into an �invertibility�issue, it is best to think of it as an omitted

variable problem. Let the decision rules of a log-linearized model be:

x1t = A(�)x1t�1 +B(�)et

x2t = C(�)x1t�1 +D(�)et (1)

where et � iid(0;�e), x1t are the states, x2t the controls, et the innovations in the disturbances and

A(�); B(�); C(�); D(�) continuous di¤erentiable functions of the structural parameters �. Thus, the

log-linearized decision rules are members of a class of VAR(1) models of the form:�
I � F11` F12`
F21` I � F22`

� �
y1t
y2t

�
=

�
G1
G2

�
et (2)

Suppose y1t is a vector of variables excluded and y2t a vector of variables included in the VAR and

that these vectors do not necessarily coincide with x1t and x2t. Then, the representation for y2t is

(I � F22`� F21F12(1� F11`)�1`2)y2t = [G2 � (F21(1� F11`)�1G1`]et (3)

While the model for y2t is an ARMA(1;1), the impact e¤ect of the shocks in (2) and (3) is
identical, both in terms of magnitude and sign. Thus, as long as robust sign restrictions are

imposed on impact, this form of misspeci�cation does not a¤ect shock identi�cation 1.

1 In small samples, estimates of G2 will be biased making standard magnitude restrictions unlikely to hold. As we
show later, when G2 is not close to zero, sign restrictions will hold even in small samples.
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2.3 Comparing our approach to the literature

The methodology we propose is related to early work by Canova, Finn and Pagan (1994); and to

the recent strand of literature identifying VAR disturbances using sign restrictions (see Canova and

De Nicolo� (2002) or Uhlig (2005)). It is also related to Del Negro and Schorfheide (2004) and

(2009), and Del Negro et. al. (2006) who use the data generated by a cyclical model as a prior for

reduced form VARs. Two main di¤erences set our approach apart: we condition the analysis on a

general class of models rather than a single one; we only work with qualitative restrictions rather

than quantitative ones. This focus allows generic forms of model misspeci�cation to be present and

vastly extends the range of structures for which model evaluation becomes possible.

Corradi and Swanson (2007) developed a procedure to test misspeci�ed models. Their approach

is considerably more complicated than ours, requires knowledge of the DGP and is not necessarily

informative about the economic reasons for the discrepancy between the model and the data. Fukac

and Pagan (2008) also suggest using limited information methods to evaluate business cycle models

but consider quantitative restrictions on single equations of the model while we focus on qualitative

implications induced by certain disturbances. Finally, Chari, et. al. (2007) evaluate business

cycle models using reduced form �wedges�. Relative to their work, we use a structural conditional

approach and probabilistic measures of �t for model comparison exercises.

3 The evaluation procedure in a controlled experiment

To examine the properties of our procedure in realistic setups, we consider a class of New-Keynesian

models without capital, employed e.g. by Rabanal and Rubio Ramirez (2005) among others, which

allows for habit in consumption, and for price and wage rigidities. We choose this class because

several sub-models of interest are nested into the general setup and the structure is �exible and

tractable. In the �rst part, we investigate the properties of our procedure in population. Later on,

we discuss whether sampling and speci�cation uncertainty make a di¤erence.

3.1 The class of models

The equilibrium conditions, with variables expressed in log-deviations from the steady state, are

�t = Et�t+1 + (Rt � Et�t+1) (4)

�t = ebt �
�c
1� h (yt � hyt�1) (5)

yt = ezt + (1� �)nt (6)

mct = wt + nt � yt (7)

mrst = ��t + �lnt (8)
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wt = wt�1 + �
w
t � �t (9)

�wt � �w�t�1 = �w [mrst � wt] + �(Et�wt+1 � �w�t) (10)

�t � �p�t�1 = �p [mct + e
�
t ] + �(Et�t+1 � �p�t) (11)

Rt = �RRt�1 + (1� �R)
�

��t + 
yyt

�
+ eRt (12)

Equation (4) is the consumption Euler equation: �t is the marginal utility of consumption, Rt the

nominal interest rate, �t price in�ation. Equation (5) de�nes the marginal utility of consumption

with external habit formation and ebt is a preference shock. The production function is in (6); e
z
t

is a productivity disturbance and nt are hours worked. Real marginal costs mct are de�ned in (7),

and wt is the real wage. Equation (8) gives an expression for the marginal rate of substitution,

mrst. Equation (9) is an identity linking real wage growth to the di¤erence between nominal

wage and price in�ation. The wage and price Phillips curves arising from Calvo nominal rigidities

are in (10) and (11). �p (�w) parameterizes the degree of backward-lookingness in price (wage)

setting; e�t is a price markup shock, and �
w
t wage in�ation. The slopes of the curves are �p �

(1��p)(1���p)
�p

1��
(1��+��) and �w �

(1��w)(1���w)
�w(1+'�l)

, respectively. The central bank adjusts the nominal

interest rate Rt according to the rule in (12). The four disturbances (ezt ; e
b
t ; e

R
t ; e

�
t ) are driven by

mutually uncorrelated, mean zero innovations. The productivity shock ezt and the preference shock

ebt have autocorrelation coe¢ cients �z and �b, respectively. The monetary shock e
R
t and the markup

shock e�t are iid. The standard deviations of the innovations are (�
z; �b; �R; ��).

At least �ve sub-models of interest are nested into this general structure, which we label M - a

�exible price, sticky wage model (�p = 0), which we label M1; a sticky price, �exible wage model

(�w = 0), which we label M2; a �exible price and �exible wage model (�p = 0, �w = 0), which

we label M3; a model with no habits (h = 0), which we label M4, a model with no indexation

(�p = 0; �w = 0), which we label M5 - and this allows us to conduct meaningful testing exercises.

To �nd sign restrictions that hold across parameter values and for sub-models in the class, we

specify for each parameter a uniform distribution over an interval, chosen to be large enough to

include theoretically reasonable values, existing structural estimates or values used in calibration

exercises - see third column of Table 1. For example, the interval for the risk aversion coe¢ cient

contains the values used in the calibration literature (typically 1 or 2) and the higher values typically

employed in the asset pricing literature (see e.g. Bansal and Yaron (2004)), while the intervals for

the habit and the Calvo parameters include, roughly, the universe of possible values considered in

the literature. Since the discount factor � and the markup parameters � and ' are not separately

identi�ed - they enter the two Phillips curves as composites, together with the price and wage

stickiness parameters - they are �xed in our exercises.

We draw a large number of parameter vectors, compute impulse responses for each draw and,

with the collection of responses, construct pointwise 90 percent response intervals. Table 2 reports
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Parameter Description Support DGP1 DGP2

� discount factor 0.99 0.99 0.99
� elasticity in goods bundler 6 6 6
' elasticity in labor bundler 6 6 6
�c risk aversion coe¢ cient [1.00, 5.00] 2.00 2.00
�l inverse Frish elasticity of labor supply [0.00, 5.00] 1.74 1.74
h habit parameter [0.00, 0.95] 0 0
�p probability of keeping prices �xed [0.00, 0.90] 0 0.75
�w probability of keeping wages �xed [0.00, 0.90] 0.62 0
�p indexation in price setting [0.00, 0.80] 0 0
�w indexation in wage setting [0.00, 0.80] 0 0
� 1 - labor share in production function [0.30, 0.40] 0.36 0.36
�r inertia in Taylor rule [0.25, 0.95] 0.74 0.74

y response to output in Taylor rule [0.00, 0.50] 0.26 0.26

� response to in�ation in Taylor rule [1.05, 2.50] 1.08 1.08
�z persistence of productivity [0.50, 0.99] 0.74 0.74
�b persistence in taste process [0.00, 0.99] 0.82 0.82
�z standard deviation of productivity 0.0388 0.0388
�� standard deviation of markup 0.0316 0.0316
�b standard deviation of preferences 0.1188 0.1188
�r standard deviation of monetary 0.0033 0.0033
�m standard deviation of measurement error 0.0010 0.0010

Table 1: Supports for the parameters and DGPs used in the experiments.

the sign of the interval in the impact period. For each shock, there is a column for the general

model and one for each sub-model; a �+�indicates robustly positive responses; a �-�robustly negative

responses; a �?� responses which are not robust; and �NA�responses which are zero by construction.

Figure A.1 in the appendix shows the range of dynamic outcomes. The observable variables we

consider are the nominal rate (Rt), the real wage (wt), the in�ation rate (�t), output (yt), and

hours (nt).

Many of the impact responses have robust signs, both across parameterizations and sub-models.

For example, positive markup shocks increase production costs for any sub-model and parameteri-

zation; thus, for a given demand, production, the real wage and employment contract while in�ation

and the nominal rate increase. In general, taste shocks are the disturbances delivering less robust

impact responses across sub-models and the real wage the variable whose impact response is less

robust within sub-models. The sign of the real wage responses crucially depends on the relative

degree of wage and price stickiness; given the ranges we employ, it is then natural that the real

wage may fall or rise in response to several shocks.

The impact response of the real wage to monetary disturbances is of particular interest since

it di¤ers in sign for sub-models in the class featuring di¤erent frictions. In sub-model M2 (sticky
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Markup shocks Monetary shocks

MM1M2M3M4M5 MM1M2M3M4M5
Rt + + + + + + + + + + + +
wt - - - - - - ? + - NA ? ?
�t + + + + + + - - - - - -
yt - - - - - - - - - NA - -
nt - - - - - - - - - NA - -

Taste shocks Technology shocks

MM1M2M3M4M5 M M1 M2 M3M4M5
Rt + + + ? + + - - - - - -
wt ? - ? - ? ? ? + ? + ? ?
�t + + ? ? + + - - - - - -
yt + + + + + + + + + + + +
nt + + + + + + - - - - - -

Table 2: Signs of the impact response intervals to shocks, di¤erent models. A �+� indicates robustly positive

responses; a �-�robustly negative responses; a �?� responses which are not robust; and �NA�responses which are zero

by construction. M is the general model, in M1 �p = 0; in M2 �w = 0; in M3 �p = 0 and �w = 0; in M4 h = 0; in M5

�p = 0 and �w = 0.

prices, �exible wages) real wages fall. With �exible wages, workers are on their labor supply schedule

and, on impact, wt =
�
�c
1�h +

�l
1��

�
yt, so that real wages negatively comove with monetary shocks.

In sub-model M1 (�exible prices and sticky wages), workers are o¤ their labor supply schedule and

from the �rm�s labor demand schedule, wt = � �
1��yt - real wages positively comove with monetary

shocks. Thus, while it is di¢ cult to distinguish between sticky price and sticky wage models using

unconditional measures of wage cyclicality, sign restrictions on the impact response of the real wage

to monetary shocks can separate the two sub-models in the class.

3.2 Population analysis

We pick the �exible price, sticky wage sub-model M1 as our DGP. The parameters used in simulating

the �pseudo-actual� data are the fourth column of table 1 and are close to those estimated by

Rabanal and Rubio-Ramirez (2005). We endow the researcher with (4)-(12) and its solution and

let both the model dynamics and the covariance matrix of the reduced form errors � be known. We

ask whether the responses of the real wage to various shocks can be recovered with high probability

employing di¤erent subsets of the robust restrictions present in table 2 in alternative VAR systems

and identifying shocks either jointly or separately.

We estimate the matrix of impact coe¢ cients as follows: i) we draw a large number of normal,
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zero mean, unitary matrices; ii) employ the QR decomposition and construct impact responses as

�0 = S � Q, where SS0 = �; and iii) keep the responses satisfying the restrictions we impose. To
make sure results are stable, we draw until 10000 candidates satisfying the restrictions are found.

3.2.1 Can we recover the true model?

The empirical model is composed of 5 variables: the nominal rate, output, in�ation, hours and

the real wage. Since the economy features 4 structural shocks, we sidestep singularity issues by

attaching a measurement error to the law of motion of the real wage. We identify disturbances

(a) jointly, using robust impact restrictions on all variables but the real wage; (b) jointly, using

robust impact restrictions on all variables but hours and the real wage; (c) individually, the markup

shock; (d) individually, the monetary shock. In (c) and (d) we use robust impact restrictions on

all variables but the real wage. In addition to the basic DGP, we also examine two alternative

setups, one where the standard deviation of monetary shocks is 10 times larger and one where the

standard deviation of the markup shocks is 10 times larger, and for each setup we repeat the four

experiments. Table 3 reports the percentage of correctly signed impact real wage responses.

Basic Larger monetary shocks Larger markup shocks

Identi�ed shocks (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)
Markup 99.8 99.8 99.9 99.9 100 100
Monetary 75.7 76.2 74.9 92.4 90.1 89.7 58.2 59.0 50.6
Taste 98.8 98.3 99.2 99.3 97.8 95.8

Technology 99.7 99.7 96.2
Supply 99.7 99.1 99.9

Table 3: Percentage of cases where the impact real wage response is correctly signed. The VAR includes output,

real wages, hours, in�ation and the nominal rate. In case (a) output, in�ation, nominal rate and hours are restricted

and shocks are jointly identi�ed; in case (b) output, nominal rate and in�ation are restricted and a supply shock,

a monetary and a markup shock are identi�ed; in cases (c) and (d) output, in�ation, nominal rate and hours are

restricted and a markup or a monetary shock are separately identi�ed. In panels two and three the standard deviation

of either the monetary or of the markup shocks is set 10 times larger.

Our procedure recognizes the qualitative features of the DGP with high probability, when

the ideal conditions we consider hold. Two features of table 3 deserve some comments. First,

the number of shocks identi�ed and, to a less extent, the number of identi�cation restrictions

employed matter for the results. The larger imprecision obtained when only monetary shocks are

identi�ed, (compare cases (a) and (d) in each panel) comes from the fact that monetary shocks

are contaminated - they pick up features of other structural disturbances and of the measurement

error.
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Second, as in Paustian (2007), the relative strength of the shock signal matters. For example,

the real wage e¤ects of markup and taste shocks are easy to measure because their signal is relatively

strong, making conclusions largely independent of the number of restrictions used and the number

of shocks identi�ed. For monetary shocks, whose standard deviation is relatively small, having a

su¢ cient number of restrictions is important to capture the sign of the real wage impact response.

When the standard deviation of monetary shocks is increased, the precision with which our approach

recognizes the sign of the impact e¤ect uniformly increases, highlighting the trade-o¤ between the

strength of the signal and number of identi�cation restrictions used.

Studies of the transmission of monetary shocks are abundant in the last 15 years and several

researchers have used sign restrictions to identify these disturbances in the data. Since such distur-

bances are likely to have small relative variability, our results indicate that their transmission could

be mismeasured, unless a su¢ ciently large number of restrictions is employed. In general, since the

relative volatility of many structural shocks is unknown, being too agnostic in the identi�cation

process may have important costs for inference.

In the appendix, we demonstrate that these conclusions hold true when hours is dropped from

the empirical model. A 4 variable VAR is fundamentally di¤erent from a 5 variable VAR since, in

the latter, a state variable is missing - the observed real wage is a contaminated signal of the true

one. Ravenna (2007) and Chari et. al. (2008) indicated that such an omission may be dangerous

for inference if standard structural VARs are estimated. Our results con�rm the point made in

section 2: when robust sign restrictions on the impact response of certain variables are used for

identi�cation purposes, misspeci�cation of the VAR is less crucial for inference.

3.2.2 Can we exclude alternative models?

A sticky price, �exible wage sub-model and a �exible price, sticky wage sub-model are local to

each other as far as the sign of impact responses is concerned. As table 2 shows, the impact e¤ect

of a number of variables to the four shocks in the two sub-models is similar. The procedure can

recover the sign of the real wage response to monetary shocks well when the �exible price, sticky

wage sub-model M1 is the DGP. Would the answer be di¤erent if the sticky price, �exible wage

sub-model M2 and the parameterization listed in the last column of table 1 characterizes our DGP?

In other words, can we exclude with high probability that sub-model M1 is the DGP just by looking

at the sign of the impact responses of the real wage to monetary shocks?

The answer is positive. In the three experiments considered (identifying all shocks using the

impact restrictions on output, in�ation, hours and the nominal rate; identifying monetary, taste

and supply shocks using impact restrictions on output, in�ation and the nominal rate; and iden-

tifying only monetary shocks) the percentage of incorrectly recognized cases ranges between 0.4

and 1.3 percent. Could this conclusion be due to the selection of the parameters of the DGP?
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To examine this possibility, we have considered two other sets of experiments. First, we have in-

creased the standard deviation of either the monetary shocks or the markup by a factor of ten. The

conclusion are broadly unchanged: the faction of impact real wage responses to monetary shocks

that is incorrectly signed never exceeds 8.0 percent. Second, we have allowed the parameters to be

randomly and uniformly drawn from the intervals in table 1 - in this case, we draw 200 parameter

vectors, setting �w = 0 for every draw, and for each vector, we draw 10000 identi�cation matrices.

When only monetary shocks are identi�ed, the sign of the impact real wage response is incorrectly

identi�ed, on average, 3.21 percent of the times - the numerical standard error is 5.47. Thus, the

exact parameterization has little in�uence on the results.

Why is our procedure successful in capturing the DGP and in excluding local DGPs as potential

data generators? The answer is simple. While the range of impact real wage responses to monetary

shocks generated randomizing the parameters of the DGP in M1 and M2 is relatively large, the

degree of overlap of the distribution of responses is minimal. Thus, we can tell apart the two sub-

models with high probability because the theory has sharp and alternative implications for the real

wage responses to monetary shocks. The answer would be di¤erent if the theoretical implications

of di¤erent sub-models are more mudded. For example, the response of the real wage to technology

shocks in M2 is not robust and the percentage of incorrect cases exceeds 25 percent under some

identi�cation con�guration. Thus, only robust restrictions should be used for testing purposes.

These results are interesting also from a di¤erent perspective. Canova and Sala (2009) and

Iskrev (2007) have shown that classical econometric approaches have di¢ culties in separating sticky

price and sticky wage models, because the distance function constructed using dynamic responses

or the likelihood function are �at in the parameters controlling price and wage stickiness. Similar

results are reported by Del Negro and Schorfheide (2008), when Bayesian methods are used. Our

semi-parametric approach, which exploits the idea that only robust restrictions should be used for

identi�cation and evaluation, can instead give sharp answers to this question.

3.2.3 Summarizing the shape of the dynamic responses

The evaluation analysis has so far concentrated on the sign of the impact response of a variable

left unrestricted in the identi�cation process. For many empirical purposes this focus is su¢ cient:

business cycle theories do not typically have robust implications for the magnitude or the persistence

of the responses to shocks. At times, however, the shape of the dynamic responses is of interest

and one may want to know either in which percentile of the estimated distribution of responses the

true responses lie after, say, one year or whether there exists a location measure that reasonably

approximates, say, certain conditional multipliers.

Figure 1 plots the median of the set of identi�ed real wage responses to shocks, horizon by

horizon, and the true real wage responses in the Basic setup, case (a) of table 3. The median is a
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reasonable measure of the impact response of real wages to all shocks, both in a qualitative and in

a quantitative sense, while it is an imperfect estimator of the true conditional real wage dynamics,

at least as far as the responses to monetary shocks are concerned. Nevertheless, in terms of the

sign of the responses, the median is an acceptable summary measure. Relative to other location

measures, it is slightly better than the average response and very similar to the trimmed mean

(computed dropping the top and the bottom 25 percent of the responses).
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Figure 1: Real wage responses to shocks.

Fry and Pagan (2007) have criticized the practice of using the median of the distribution of

responses as location measure when structural disturbances are identi�ed with sign restrictions since

the median at each horizon and for each variable may be obtained from di¤erent candidate draws.

As a consequence, structural shocks may not be uncorrelated, and structural analyses di¢ cult to

interpret. As an alternative, they suggest to use the single identi�cation matrix that comes closest

to producing the median impulse response for all variables. In our exercises, the correlation among

identi�ed shocks, computed using the median, is indeed signi�cant and ranges from 0.59 to 0.89
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in absolute value. Therefore, the concern of Fry and Pagan seems legitimate. However, as �gure

1 shows, Fry and Pagan�s median is not a uniformly superior summary measure: it is similar to

our median measure for markup and technology shocks; it is quantitatively worse for taste shocks;

and for monetary shocks, it produces real wage responses with the wrong sign after a few horizons.

Thus, if attention focuses on the responses to monetary shocks, it is unclear which measure should

be used and, if the sign of the dynamics is of interest, having uncorrelated shocks may be worse.

To know more about the performance of the two summary location measures, we have calculated

the contemporaneous correlation between the true disturbances and the estimated disturbances

computed using the Fry and Pagan median and between the true disturbances and the estimated

disturbances obtained by taking the median value of the identi�cation matrix (i.e. the matrix which

produces on impact the median response).

Median Identi�cation Fry and Pagan Median
MarkupMonetary Taste TechnologyMarkupMonetary Taste Technology

Markup 0.94 -0.24 0.17 -0.15 0.35 0.01 -0.53 -0.38
Monetary -0.42 0.81 -0.36 0.11 -0.27 0.88 -0.27 0.18
Taste 0.76 -0.02 0.62 0.14 -0.24 0.17 0.72 -0.41

Technology 0.74 -0.15 0.33 0.54 0.11 0.34 0.10 0.79

Table 4: Correlations between true shocks (columns) and estimated shocks (rows). The DGP is the sticky wage,
�exible price model M1; the VAR includes output, real wages, hours, in�ation and the nominal rate; shocks are

identi�ed using impact restrictions on output, in�ation, hours and nominal rate. In the �rst panel the median

rotation matrix is used.

Table 4 summarizes these correlations. Both measures appear to produce qualitatively similar

results: estimated shocks are mostly correlated with the true shocks of the same type, but some

contamination is present. As far as the correlation between identi�ed monetary shocks with true

shocks (second column in each panel) distortions appear to occur because, when the median iden-

ti�cation matrix is used, estimated monetary shocks are negatively correlated with true markup

shocks and, when the Fry and Pagan median is used, estimated monetary shocks are positively

correlated with technology shocks. Thus, while theoretically appealing, the Fry and Pagan median

is not clearly preferable to other summary statistics re�ecting identi�cation uncertainty.

We have conducted a number of additional exercises to check whether the performance of

location statistics is a¤ected by changes in the experimental design. The results agree with what

we had in the previous subsections: identifying more shocks or increasing the strength of the

variance signal improves the dynamic performance of the median; the dimensionality of the VAR

has little in�uence on the dynamic properties of the median; the exact nature of the DGP makes
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no di¤erence for the conclusions we reach.

3.3 Does sampling and speci�cation uncertainty matter?

The ideal conditions considered so far are useful to understand the properties of the procedure but

unlikely to hold in practice. Do conclusions change if the autoregressive parameters and the covari-

ance matrix of the shocks are estimated prior to the identi�cation of the structural disturbances?

To capture estimation uncertainty, we consider 200 replications of each experiment we have run.

In each replication, we simulate data, keeping the parameters �xed and injecting in the decision

rules random noise (and measurement error) in the form of normal iid shocks with zero mean and

standard deviations as reported in table 1. We consider samples with 80, 160 and 500 points - 20,

40 and 125 years of quarterly data. For each replication, we estimate a �xed �nite order BVAR,

where a close to non-informative conjugate Normal-Wishart prior is used. We prefer the option of

an arbitrary lag length because it is the one typical used in practice even though, for our DGP, it

introduces an additional source of misspeci�cation - the decision rules imply that a VAR(1) should
be used. Later, we examine what happens if the lag length is optimally selected. We jointly draw

from the posterior of the parameters, the covariance matrix of the shocks and the identi�cation

matrices until 2000 draws satisfying the restrictions are found. We compute pointwise medians and

pointwise credible 90 percent posterior intervals for 20 horizons for the response of the real wage to

monetary shocks at each replication. We summarize the results by computing the median (or the

average) value across replications of the median estimate and the interval containing 90 percent of

the estimated 90 percent intervals at each horizon.

We generate data from a sticky wage, �exible price model with one measurement error. A

BVAR with the nominal rate, output, in�ation, hours, and the real wage is estimated. We identify

shocks imposing sign restrictions on the impact responses of the nominal rate, output, in�ation and

hours. Figure 2 reports the real wage responses to monetary shocks for di¤erent sample sizes and

for di¤erent lag lengths, when only monetary shocks are identi�ed. The corresponding �gure when

all shocks are identi�ed is in the appendix.

Three features of �gure 2 stand out. First, sample uncertainty is small relative to identi�cation

uncertainty: the magnitude of the intervals decreases as the sample size increases for each lag length,

but the di¤erences between T=80 and T=500 are small. In standard SVARs, biases in the estimates

of the dynamics are usually of an order of magnitude larger than those in the estimated covariance

matrix. This is true also here. However, biases in estimated VAR coe¢ cients are also relatively

small. In fact, the estimated median dynamics have similar properties as the sample size increases,

and even with T=80 the median and the true dynamics are reasonably close. Thus, even a loose

Bayesian prior, is e¤ective in eliminating most of the problems noted by Kilian (1999). Second, the

envelope of the bands is wide and includes the zero line at every horizon. Thus, literally speaking,
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Figure 2: Real wage responses to monetary shocks, Monte Carlo results.

it is di¢ cult to statistically pin down the sign of real wage responses. One could make estimation

results look better, by changing the uncertainty measures, for example, reporting the median (or

the average) of the upper and lower 90 percent credible intervals across replications. Large bands

are the results of the considerable identi�cation uncertainty intrinsic to the approach. Below, we

describe a way to reduce it. Third, changing the lag length of the VAR has little consequences on

the outcomes. With a larger number of lags, the bands become generally larger, especially when

T=80, but the dynamics of the median are unchanged. As it is shown in the appendix, this remains

true also when the lag length is selected with BIC. Hence, none of the problems highlighted by

Chari, et al. (2008) appear to be present here. Finally, the number of shocks we identify has

little consequences on the quality of the outcomes. As expected, identifying more shocks makes the

bands smaller for any T and any VAR length, but only marginally so, and the properties of the

median are unchanged 2.

2We have also computed coverage rates - that is, the probability that the true response falls within the estimated
credible interval - but we have decided to omit them since they provide little new information. Coverage rates for
partially identi�ed models are generally smaller than those computed with classical methods and a standard nominal
size because of the way identi�cation uncertainty is treated in the two contexts (see Moon and Schorfheide (2009)). In
general, the coverage rate for the wage in response to monetary shocks is 60% on impact and increases to about 96%
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All the conclusions we have obtained in population are una¤ected by the presence of sample and

speci�cation uncertainty. For example, we can still recognize the DGP and exclude local sub-models

with high probability looking at the impact response of the real wage to monetary shocks (see table

A2 in the appendix) and the performance of the median as summary measure is una¤ected by

sample and, more remarkably, by speci�cation uncertainty. The appendix also reports summary

tables for experiments conducted when the sticky wage, �exible price model M1 is the DGP and

the standard deviation of markup shocks or the standard deviation of the monetary shocks and

when the sticky price; when �exible wage model M2 is the DGP and either four or �ve variables

are used in the VAR with di¤erent lags. All our basic results hold in these alternative setups.

In sum, sample and speci�cation uncertainty have minor consequences on the performance of our

approach. Sample uncertainty is small relative to identi�cation uncertainty (see Kilian and Murphy,

2009, for related evidence); speci�cation uncertainty is a minor problem for our methodology.

3.4 Advice to the users

Our procedure has good size and power properties. However, three main ingredients are needed

to give the methodology its best chance to succeed. First, it is important not to be too agnostic

in the identi�cation process. Sign restrictions are weak and this makes identi�cation uncertainty

important (see Manski and Nagy (1998) for a similar result in micro settings). Thus, it is generally

easier to recognize the DGP when more variables are restricted, for a given number of identi�ed

shocks, or more shocks are identi�ed. Since, as we have mentioned, theoretical sign restrictions

at horizons larger than the impact one are often whimsical, constraints on the dynamic responses

should be avoided at the identi�cation stage.

Our experiments also showed that credible intervals tend to be large. Since the methodology

delivers partially identi�ed models, expecting the same degree of estimation precision as for exactly

identi�ed models is foolish. However, probabilistic summary statistics are informative about the

features of the DGP, even when asymptotically-based standard normal tests are not. If one insists

on using these tests, one should be aware that they are meaningful only if a su¢ cient number

of restrictions are employed (the amplitude of the bands is inversely proportional to the number

of identi�cation restrictions employed), and that smaller con�dence intervals (say, 68 percent or

interquartile ranges) are more appropriate when identi�cation uncertainty is large.

Second, estimation biases should be, when possible, reduced since they may compound with

identi�cation uncertainty. In the experiments we have run, estimation biases were small, even in

small samples, but this needs not to be the case for every possible design. A close to non-informative

at longer horizons for the basic VAR(2). As the sample size increases, coverage is slightly lower since the estimated
bands shrink but the change is small. Coverage rates are not much a¤ected by the VAR length: with a VAR(10), the
coverage rate for the impact wage response to monetary shocks is 62%.
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prior was su¢ cient to reduce them. Other approaches, see Kilian (1999), may work as well.

Third, inference is very reliable when the analysis focuses on the dynamics induced by shocks

with a stronger relative variance signal. However, even when the shock signal is weak, as the

monetary shocks in our designs, systematic mistakes are absent. Thus, even though a-priori is

hard to say which shock dominates (structural estimation does not help since the magnitude of

the relative variances depends on the degree of misspeci�cation present in various equations), and

pathological examples can always be constructed (see Paustian (2007) or Fry and Pagan (2007)),

relative di¤erences in the variance signal become a problem only in very extreme circumstances.

When interesting shocks are suspected to generate a weak relative signal, we recommend users to

employ plenty of identi�cation restrictions and to consider a class of models with a su¢ ciently

rich shock structure. These two conditions were su¢ cient to insure a good performance in all

experiments we run.
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Figure 3: Response under di¤erent identi�cation schemes. Scheme 1 sign restrictions, one shock; Scheme 2
sign plus uniqueness restrictions, on shock; Scheme 3 sign restrictions all shocks. Vertical bar: true value.

In theory, it is often the case that disturbances generate a unique pattern of impact responses

for the endogenous variables. However, in practice, responses are not restricted to satisfy this

uniqueness condition. Thus, especially when a small subset of the shocks is identi�ed, it is possible

that shocks disregarded in the analysis generate similar pattern of responses. This multiplicity has

no reason to exist and may make inference weaker than it should. But, in practice, what do we

loose by failing to impose the uniqueness condition in identi�cation? Typically a lot.
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To show this, we generate density estimates of the unconstrained (4; 4) element of the matrix

D =

2664
�1 1 1 1
1 �1 1 1
1 1 �1 1
1 1 1 �1

3775
in a static four variable VAR, y = De, where e has diagonal variance with elements [1,1,1,2],

identifying the last shock only using restrictions on the (j; 4) > 0; j = 1; 2; 3 elements of the matrix

(scheme 1), identifying the last shock using the same restrictions and the restriction that the other

three shocks can not generate a similar pattern of responses (scheme 2) and identifying all the

shocks using the restrictions on the (j; i); j =; 1; 2; 3; i = 1; : : : ; 4 elements of the matrix. Figure 3

shows that the distribution of responses in scheme 1 (dotted line) and in scheme 2 (solid line) looks

very di¤erent: 30 percent of the mass of the estimated distribution is above zero in scheme 1 and

only 9 percent is above zero when the additional uniqueness restrictions are imposed; the median

of the distribution is a better estimator of the true value in scheme 2. Thus, while not a substitute

for identifying all the shocks, which can be seen gives very precise information about the sign and

the magnitude of the unrestricted element, imposing the uniqueness condition may help to sharpen

inference when only a subset of the shocks is identi�ed.

4 Examples

This section presents two examples illustrating how the methodology can be used to sort out the

frictions consistent with the transmission mechanism observed in the data; to analyze the relevance

of a class of models; to evaluate the importance of an added feature; and to �estimate�parameters

which are typically non-identi�able with aggregate data and standard techniques.

4.1 Evaluating a benchmark speci�cation

4.1.1 The class of models

The class of models we consider is regarded as the benchmark for policy analysis and forecasting

in the literature (see Christiano, et. al. (2005) and Smets and Wouters (2003)). The structure

features nominal frictions (sticky nominal wage and price setting, backward wage and in�ation

indexation), real frictions (habit formation in consumption, investment adjustment costs, variable

capital utilization and �xed costs in production) and nests several speci�cations one maybe inter-

ested in analyzing. The class has three blocks and its log-linearized representation (around the



4 EXAMPLES 22

steady state) is as follows. The aggregate demand block is:

yt = cyct + iyit + gye
g
t (13)

ct =
h

1 + h
ct�1 +

1

1 + h
Etct+1 �

1� h
(1 + h)�c

(Rt � Et�t+1) +
1� h

(1 + h)�c
(ebt � Etebt+1) (14)

it =
1

1 + �
it�1 +

�

1 + �
Etit+1 +

�

1 + �
qt �

�Ete
I
t+1 � eIt
1 + �

(15)

qt = �(1� �)Etqt+1 � (Rt � Et�t+1) + (1� �(1� �))Etrt+1 (16)

Equation (13) is the aggregate resource constraint. Total output, yt, is absorbed by consumption,

ct; investment, it; and exogenous government spending, e
g
t . Equation (14) is a dynamic IS curve:

ebt is a preference shock, �c the coe¢ cient of relative risk aversion and h the coe¢ cient of external

habit formation. The dynamics of investment are in equation (15); � represents the elasticity of

the costs of adjusting investments, qt the value of existing capital, eIt a shock to the investment�s

adjustment cost function and � the discount factor. Equation (16) characterizes Tobin�s q: the

current value of the capital stock positively depends on its expected future value and its expected

return, and negatively on the ex-ante real interest rate. The aggregate supply block is:

yt = !(�kt�1 + � rt + (1� �)nt + ezt ) (17)

kt = (1� �)kt�1 + �it (18)

�t =
�

1 + ��p
Et�t+1 +

�p
1 + ��p

�t�1 + �pmct (19)

wt =
�

1 + �
Etwt+1 +

1

1 + �
wt�1 +

�

1 + �
Et�t+1 �

1 + ��w
1 + �

�t +
�w
1 + �

�t�1 � �w�Wt (20)

nt = �wt + (1 +  )rkt + kt�1 (21)

Equation (17) is the aggregate production function. In equilibrium  rt equals the capital utilization

rate and ezt is a total factor productivity (TFP) shock. Fixed costs of production are given by !�1
and � is the capital share. The law of motion of capital accumulation is in equation (18). Equation

(19) links in�ation to marginal costs, mct = �rkt + (1��)wt� ezt + e
�p
t and e

�p
t is a markup shock.

The parameter �p = 1
1+��p

(1���p)(1��p)
�p

; is the slope of the Phillips curve and depends on �p, the

probability that �rms face for not being able to change prices in the Calvo setting. The parameter

�p determines the degree of price indexation. Equation (20) links the real wage to expected and

past wages, to in�ation and to the marginal rate of substitution between consumption and leisure,

�Wt = wt � �lnt � �c
1�h(ct � hct�1) � e

�w
t ; where �l is the inverse of the elasticity of hours to the
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real wage, e�wt a labor supply shock and �w = 1
1+�

(1���w)(1��w)�
1+

(1+"w)�l
"w

�
�w
. Equation (21) follows from the

equalization of marginal costs. The monetary rule is

Rt = �RRt�1 + (1� �R)(
��t + 
yyt) + eRt (22)

where "Rt is a monetary policy shock.

Equations (13) to (22) de�ne a system of 10 equations in ten unknowns, (�t; yt; ct; it; qt; lt; wt;

kt; rt; Rt). Given these variables, the productivity-wage gap (gapt =
yt
nt
�wt) can be easily generated.

The model features seven exogenous disturbances: TFP, ezt ; investment-speci�c, e
I
t ; preference, e

b
t ;

government spending, egt ; monetary policy, e
R
t ; price markup e

�p
t and labor supply, e�wt shocks. The

vector of disturbances St = [ezt ; e
I
t ; e

b
t ; e

g
t ; e

R
t ; e

�p
t ; e

�w
t ]

0; satis�es:

log(St) = (I � %) log(S) + % log(St�1) + Vt (23)

where V � iid (00;�v), % is diagonal with roots less than one in absolute value and S = E(S).

Parameter Description Support

�c risk aversion coe¢ cient [1,6]
�l inverse Frish labor supply elasticity [0.5,4.0]
h consumption habit [0.1,0.8]
! �xed cost [1.0,1.80]
1=� adjustment cost parameter [0.0001,0.01]
� capital depreciation rate [0.015,0.03]
� capital share [0.15,0.35]
1= capacity utilization elasticity [0.1,0.6]
�p degree of price stickiness [0.4,0.9]
�p price indexation [0.2,0.8]
�w degree of wage stickiness [0.4,0.9]
�w wage indexation [0.2,0.8]
"w steady state markup in labor market [0.1,1.8]
gy share of government consumption [0.10,0.25]
�R lagged interest rate coe¢ cient [0.2,0.95]

� in�ation coe¢ cient on interest rate rule [1.1,3.0]

y output coe¢ cient on interest rate rule [0.0,1.0]
%i persistence of shocks i = z; b; I; �p; �w [0,0.9]

Table 5: Supports for the structural parameters.

To �nd robust implications, we split the parameter vector � = (�1; �2); where �1 = (� =

0:99; �ss = 1:016) are �xed parameters while �2 are parameters which are allowed to vary. Table 5
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gives their intervals over which they can vary: the ranges are larger than the prior ranges considered,

e.g., in the Bayesian estimation, and we are much more agnostic about the probability of certain

parameter con�gurations than most papers in the literature.

4.1.2 The identi�cation restrictions

Table 6 reports the signs of the 68 percent impact responses intervals to the seven shocks, for a

subset of the endogenous variables. As in section 3, a �+�indicates a robustly positive sign, a �-�a

robustly negative sign and a �?� a sign which is not robust.

TFP InvestmentMarkup Labor supplyMonetary TasteGovermentGovermentGoverment
No price No wage
rigidities rigidities

�yt + + + + + + + + +
�t - - - - + + + + +
�ct + - + + + + - - -
�gapt+ ? - + - - - - -
�wt + - + - + + ? - +
�nt - + + + + + + + +

Table 6: Sign of the impact response intervals to shocks.

The table provides useful identi�cation information. Notice �rst, that TFP, investment speci�c,

markup and labor supply disturbances increase output growth and decrease in�ation on impact

while the other three disturbances produce positive comovements of these two variables. Thus,

shocks moving the aggregate supply and shocks moving the aggregate demand can be separated

using these two variables. Second, government expenditure shocks can be distinguished from the

other demand shocks since the impact response of consumption growth is negative with government

expenditure disturbances and positive with the other two shocks. Third, there are enough (mutually

exclusive) restrictions to separately identify the four supply disturbances. In fact, investment

speci�c shocks make consumption growth fall on impact while the other three shocks induce a

positive impact consumption growth response. Moreover, the impact response of the gap growth is

positive in response to TFP and labor supply shocks and negative in response to markup shocks.

Finally, real wage growth instantaneously falls in response to labor supply and investment speci�c

shocks and increases in response to the other two shocks. Since these restrictions are valid in all

the sub-models we have examined, e.g., with no habit, with full capacity utilization, with utility

which is log in consumption or linear in leisure, with no wage stickiness or indexation, etc., they

are representative of the class of models, qualify as robust, and can potentially be used to extract
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the disturbances of interest in the data.

Table 6 displays two other interesting features. The impact response of real wage growth to a

government expenditure shock depends on whether there are price or wage rigidities. Thus, it can

be used to examine the relative importance of the two types of nominal rigidities in the data. In

addition, hours growth robustly fall in response to TFP shocks and robustly increase in response

to the other three technology shocks on impact. Since these restrictions hold in all the sub-models,

except when investment adjustment costs are set to zero, they can be used as a general purpose

statistic to evaluate the quality of the model�s approximation to the data.

We use a VAR with 6 variables and two lags. We take US data for the sample 1948:2- 2007:2

from the FRED data bank at the Fed of St. Louis and estimate a BVAR using a di¤use prior. GDP

growth is measured using per-capita real chain weighted GDP; in�ation using the quarterly change

of the GDP de�ator; consumption growth using real per-capita private consumption expenditure;

the gap growth using labor productivity growth (measured as output per worker) and the real

wage compensation growth; wage growth using the compensations of employed in the business

sector and hours growth using per-capita hours; again in the business sector. We jointly identify

the four supply shocks and the government expenditure disturbance.

4.1.3 Real wage responses to spending shocks

Government expenditure shocks are obtained restricting the sign of the impact response of output

growth, in�ation, hours growth, gap growth and consumption growth. We jointly draw from

the distribution of BVAR parameters and orthonormal matrices until 1000 draws satisfying the

restrictions are found. The �rst panel of �gure 4 reports the median and the posterior 68 credible

interval for the responses of real wage growth: the impact response is signi�cantly negative - price

frictions appear to be absent - but the response turns positive after one quarter.

The speci�cation of the BVAR does not matter: eliminating the constant, using a more infor-

mative prior, or changing the lag length is irrelevant for the conclusions. For example, in the second

panel of �gure 4, we report the median and the posterior 68 credible interval in a 6 lags BVAR. On

impact the interval is still entirely negative and, while the medium term dynamics are estimated

with larger errors, the median response path in the �rst two panels has similar patterns.

Since the restrictions this class of models imposes on the dynamics of consumption growth are

at odds with existing empirical evidence (see e.g. Perotti (2007) and the next example) we have also

identi�ed generic �demand�disturbances, without imposing restrictions on consumption growth.

The dynamics of real wage growth are broadly unchanged (see third panel of �gure 4): the impact

real wage growth response to the identi�ed demand shock is negative but since one less restrictions

is used, response intervals at the �rst few horizons are wider.

It is well documented in the literature (see e.g. Schorfheide and Del Negro (2008) or Canova
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and Sala (2009)) that standard estimation procedures have hard time to distinguish which nominal

friction matters most with a �nite sample of data. It is therefore remarkable that our procedure

can tell them apart and that the answer is unambiguous: conditional on the class of models, price

rigidities are unimportant.

To make the conclusion stronger, one would like to know how trustworthy the class of models

is. Some authors, e.g. Smets and Wouters (2003),(2007), Christiano et al. (2005) claimed that

the model �ts the data well. Others, e.g. Del Negro et al. (2007) have raised important doubts.

What does our procedure tell us when the response of hours growth to technological disturbances

are used to measure the quality of the model�s approximation to the data?
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Figure 4: Responses of real wage growth to government expenditure shocks.

4.1.4 Hours and technology shocks

There has been considerable debate in the literature concerning the sign of the responses of hours to

technology shocks. While the debate has been cast into a RBC vs. New-Keynesian microfundations

(see Rabanal and Gali (2004) and Chari et al. (2008)), researchers have started distinguishing

various technology shocks (Fisher (2006)) and o¤er di¤erent explanations of the evidence. Rather

than entering the controversy, this subsection asks whether the selected class of models produces

hours dynamics in response to technology shocks which are consistent with the data?

Figure 5 reports, in the top panel, the 68 percent intervals of hours growth responses to the four

shocks in the theory and, in the bottom panel, the median and the posterior 68 credible intervals

for hours growth responses to the same four shocks in the data, when shocks are identi�ed by

restricting the sign of the impact response of output growth, in�ation, consumption growth, hours

growth and gap growth. Clearly, the model�s approximation to the conditional dynamics of hours

growth is limited. While the sign of the median hours growth response in the data is consistent

with the theory (as in Paustian (2007)), the impact e¤ect, which could robustly signed in theory
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Figure 5: Responses of hours growth to technology shocks

for all shocks, can be signed with high probability only for labor supply shocks; the shape of 68

posterior interval of hours growth dynamics di¤ers from 68 percent interval we had in theory; the

magnitude of the responses is altered. In general, the best match is obtained with markup and

labor supply shocks; the poorest with TFP and investment speci�c shocks.

In sum, while in the class of New-Keynesian models we consider the procedure unambiguously

favours wage frictions to characterize the impact response of the real wage to government shocks,

it also raises important doubts about the quality of the approximation provided by this class of

models for the data. In particular, the robust restrictions the class possesses are insu¢ cient to sign

the impact responses of hours growth to several supply disturbances, to statistically characterize

the dynamics responses and to quantitative evaluate the relative importance of various disturbances

for hours growth �uctuations.
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4.2 Adding a particular friction

It is well known that standard business cycle models have a hard time to produce the private

consumption dynamics in response to government consumption expenditure shocks generated by

structural VARs (see e.g. Perotti (2007)). However, one should also be aware that the restrictions

used in the VARs are not explicitly derived from any theoretical speci�cation proved to be consistent

with the data. Gali et al. (2007) have taken a relative standard New Keynesian class of models

and showed that adding one particular friction (a large portion of non-Ricardian consumers) can

make the theory consistent with the existing structural VAR evidence. The question we investigate

here is whether the sign of consumption responses in the data matches the one in theory, once the

robust restrictions implicit in the class are used to identify government consumption shocks.

4.2.1 The class of models

The log-linearized conditions for the class of models we consider are

qt = �Etqt+1 + [1� �(1� �)]Etrkt+1 � (Rt � Et�t+1) + e
rp
t (24)

it � kt�1 = �qt (25)

kt = (1� �)kt�1 + �it (26)

cot = cot+1 � (Rt � Et�t+1) (27)

crt =
1� �
�cy

(wt + n
r
t )�

1

cy
trt (28)

wt = cjt + �ln
j
t j = o; r (29)

rkt = mct + e
z
t + (1� �)(nt � kt�1) (30)

wt = mct + e
z
t � �(nt � kt�1) (31)

yt = ezt + (1� �)nt + �kt�1 (32)

yt = cyct + iyit + gye
g
t (33)

�t � �p�t�1 = �p(mct + e
u
t ) + �(Et�t+1 � �p�t) (34)

Rt = �RRt�1 + (1� �R)(
��t + 
yyt) + eRt (35)

bt =
1

�
[(1� �b)bt�1 + (1� �g)e

g
t ] (36)

tt = �bbt�1 + �ge
g
t (37)

Equations (24)-(25) describe the dynamics of Tobin�s q, its relationship with investments it
and erpt is a risk premium shock. The log-linearized law of motion of capital is in equation (26).

Equation (27) is the Euler equation for cot , the consumption of optimizing agents. Consumption
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of the non-Ricardian agents, crt , is determined by their labor income from supplying nrt hours at

wage wt, net of paying taxes trt , as in equation (28). With �exible labor markets, the labor supply

schedule for each group is in equation (29). Cost minimization implies (30) and (31), where mct is

real marginal cost, ezt a total factor productivity shock and r
k
t the rental rate of capital. Output is

produced as in (32). Market clearing requires that output is absorbed by aggregate consumption

ct, investment it and government spending e
g
t , which is random. The new Keynesian Phillips curve

is in equation (34) where eut is an iid markup shock, �p parameterizes the degree of indexation and

�p is de�ned as in the previous example. The central bank conducts monetary policy according to

the rule (35) and eRt a monetary policy shock. The government budget constraint together with

the �scal rule gives rise to equation (36), where bt denotes real bonds. The �scal rule is in (37). In

the aggregate, ct = �crt + (1� �)cot , nt = �nrt + (1� �)not , tt = �trt + (1� �)tot where � is the share
of non-Ricardian agents and tjt =

T jt �T j
Y ; j = o; r.

Before examining the question of interest, we address one preliminary issue. Does this class

of models produce, with high probability, instantaneously positive consumption responses to gov-

ernment spending shocks when the share of non-Ricardian consumers (ROTC) is large? We draw

parameters values uniformly over the intervals presented in the third column of table 7, except

for � which we �x at di¤erent values. The �rst panel of �gure 6, which reports the percentage of

cases in which instantaneous consumption responses to government spending shocks are negative

for di¤erent �, shows that the probability of �nding positive consumption responses increases with

the share of ROTC (in line with Gali et al. (2007)) but a large � is insu¢ cient to robustly produce

the desired result. In fact, even when the majority of the consumers are not optimizers, there is a

non-negligible probability that reasonable parameters con�gurations induce instantaneous negative

consumption responses. Thus, while the condition is necessary, it is by no means su¢ cient.
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Figure 6: Consumption responses to government spending shocks, theory.

To obtain robust identi�cation restrictions, we draw structural parameters from the intervals
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presented in the third column of table 7, setting � = 0:99 and endogenously calculating cy; iy using

steady state conditions. The range for most of the parameters is the same as in the experiments

of section 3. For the �scal parameters, we choose arbitrary but large intervals centred around the

values used Gali et al. (2007). We draw a large set of structural parameter vectors and keep only

those draws producing a determinate rational expectations equilibrium - indeterminacy may occur

for certain combinations of � and �.

Parameter Description Support

� Share of ROTC [0.00,0.90] 0, 0.80
� Wage elasticity to hours, ROTC [0.00,5.00] 0.2
� Depreciation of capital [0.00,0.05] 0.025
� Capital share [0.30,0.40] 0.33
� Elastictiy of i/K to q [0.50,2.00] 1.0
� Price stickiness [0.00,0.90] 0.75
� gross monopolistic markup [1.10,1.30] 1.2
�r inertia in monetary policy [0.00,0.90] 0.0

� policy response to in�ation [1.05,2.50] 1.5

y policy response to output [0.00,0.50] 0.0
�p indexation in price setting [0.00,0.80] 0.0
�b �scal rule response to bonds [0.25,0.40] 0.33
�g �scal rule response to expenditure [0.05,0.15] 0.1
�g AR(1) parameter gov. spending [0.50,0.95] 0.9
�t AR(1) parameter productivity [0.50,0.95] 0.9
gy steady state spending share in output [0.15,0.20] 0.2
�u standard deviation of markup shocks 0.30
�e standard deviation of monetary shocks 0.025
�z standard deviation of TPF shocks 0.07
�g standard deviation of goverment shocks 0.10
�e standard deviation of markup shocks 0.30
�rp standard deviation of risk premium shocks 0.01

Table 7: Supports for the structural parameters.

4.2.2 The identi�cation restrictions

Table 8 presents the sign of the 68 percent impact response intervals of output growth, in�ation,

hours growth and investment growth to the �ve shocks. The combination of signs these intervals

display is su¢ cient to mutually distinguish markup, technology and government spending distur-

bances while monetary and risk premium shocks can not be separately identi�ed.
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MarkupPolicy Technology SpendingRisk premiumMonetary
�y - - + + + +
� - - - + + +
�n - - - + + +
�i + - + - + +

Table 8: Sign of the impact response intervals to shocks.

Before conducting our testing exercise, it is also useful to study whether our approach can

distinguish situations where there are non-Ricardian consumers and where there are none, using

arti�cial data from this class of models and the restrictions presented in table 9. In the simulation,

we use the parameter values presented in the last column of table 8 (which are the same as in

Gali et al. (2007)), assume the researcher observes data on output growth, in�ation, hours growth,

investment growth and consumption growth and that the population VAR representation of these

variables is known. For illustration purposes, we consider two polar cases: no ROTC, � = 0; a

large portion of ROTC � = 0:8. We then ask whether the restrictions present in table 9 allow us to

sign the impact consumption responses to government spending shocks with high probability and

whether the dynamic responses of consumption growth in the VAR and in theory look similar.

The second panel of Figure 6 shows that in 99.6 percent of the accepted draws consumption falls

on impact when � = 0 and in 78.2 percent of the accepted draws consumption increase on impact

when � = 0:8 (the vertical bar in each graph denotes the true value). Furthermore, the median

response path of consumption growth tracks the actual response almost perfectly in both cases (see

third panel of �gure 6). Hence, the method works well if the class of models has generated the data

we observe and if model-based restrictions are employed for identi�cation purposes.

4.2.3 Testing the relevance of the friction and estimating �

We estimate a 5 variable BVAR with a very loose Normal Inverted-Wishart prior using quarterly

U.S. data from 1954:1 to 2007:2 obtained from the FRED database. The lag length of the VAR is

set to two - this is the value selected with BIC. The BVAR includes output growth, GDP in�ation,

and the growth rate of hours worked in the nonfarm business sector, of private investment and of

private consumption. We identify the four shocks imposing the impact restrictions appearing in

table 9. We jointly draw from the posterior distribution of the BVAR parameters and orthonormal

matrices until 1000 draws that satisfy all the restrictions are found.

Figure 7 presents the responses of consumption growth to government spending shocks in the

data. Two interesting points can be made: when model based robust restrictions are imposed,

consumption growth increases in response to a spending shock. The increase is initially large but
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Figure 7: Estimated consumption growth responses to goverment spending shocks.

very short lived. Second, the distribution of the time path of the responses at di¤erent horizons

in the data is similar to the distribution of responses presented in the third panel of �gure 6 when

� = 0:8 (which is superimposed in �gure 7 for comparison). In fact, for the �rst few horizons the

median of the two distributions have similar size and shape and the theory bands contain the data

band. Thus, if there is interest in doing so, one could update the ranges of the intervals presented

in table 8 using the information provided by the data responses and indirectly � estimate� the

share of non-Ricardian consumers, something which is impossible to do with standard techniques,

because � can not be identi�ed with aggregate data.

To conclude, in this class of models having a large share of ROTC is generally insu¢ cient to

produce positive consumption responses to government spending shocks. However, there are robust

restrictions one can use to identify spending disturbances and to measure the sign, the magnitude

and the shape of consumption responses in the data. All in all, conditional on the class of models,

the share of ROTC needed to match the data dynamics is unrealistically large (see Uhlig (2009)

for a similar point when �scal multipliers are used to match the theory and the data) and this calls

into serious question the use of this class for policy analyses and interpretation exercises.

5 Summary and conclusions

This paper presents a new methodology to examine the validity of business cycle models and to

discriminate sub-models in the class. The approach employs the �exibility of SVAR techniques

against model misspeci�cation, the insights of computational experiments, and pseudo-Bayesian
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predictive analysis to link the class of models to the data and exploits the computational convenience

of Monte Carlo techniques to design probabilistic measures of economic discrepancy which provide

e¤ective information for model builders and applied researchers.

The starting point of the analysis is a class of models which has an approximate state space

representation once (log-)linearized around their steady states. We examine the dynamics of the

endogenous variables in response to shocks for alternative members of the class using a variety of

parameterizations. A subset of the robust restrictions is used to identify structural disturbances;

and another subset to measure the discrepancy between the class and the data or to discriminate

members of the class. In the controlled experiments we run, we found that the approach can

recognize the qualitative features of DGP with high probability and can tell apart sub-models

which are local to each other. It also provides a good handle of the quantitative features of the

DGP if identi�cation restrictions are abundant; and if the relative variance signal of the shock(s)

one wishes to identify is su¢ ciently strong. The methodology is successful even when the VAR

is misspeci�ed relative to the time series model implied by the aggregate decision rules and when

sample uncertainty is present.

We regard our methodology advantageous in several respects. First, it can be used even when

the true DGP is not a member of the class of models one considers. Second, it does not require the

probabilistic structure to be fully speci�ed to be operative. Since misspeci�cation is a generic feature

of current business cycle models, these two characteristics crucially distinguish our approach from

the existing ones. Third, our procedure de-emphasizes the quest for a good calibration and shields

researchers against omitted variable biases and representation problems. Fourth, the approach can

be used in a more or less limited information mode and requires limited computer time. Finally, the

methodology may be turned into an interval estimation procedure for parameters that otherwise

would be non-identi�ed with standard econometric techniques.

The examples we have presented clearly indicate the potentials that the methodology has, the

type of information it provides, and the interaction between theory and empirical work it produces,

an interaction which is largely absent from existing methods. Recent work by Dedola and Neri

(2007), Pappa (2009) among others, demonstrates that a number of interesting questions can be

addressed within the framework we propose and that the answers it provides are useful for both

academics and policymakers.
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Figure A1: Pointwise 90 percent response intervals in the general model
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Figure A2: Pointwise 68 percent real wage response intervals to monetary shocks, all
shocks identi�ed.
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Basic Larger monetary shocks Larger markup shocks

Identi�ed shocks (b) (c) (d) (b) (c) (d) (b) (c) (d)
Monetary 80.9 79.4 94.8 88.6 78.3 77.4
Taste 98.3 99.1 98.0
Supply 99.9 99.4 100 100 100 100

Table A.1: Percentages of correct sign for the impact response of real wages in a four variable VAR. The VAR

includes output, real wages, hours, in�ation and the nominal rate. In b) output, in�ation and nominal rate

are restricted and supply, monetary and taste shocks are jointly identi�ed, in c) and d) output, nominal

rate and in�ation are restricted, and either a supply shock or a monetary shock are separately identi�ed.

All identi�ed Monetary shocks identi�ed

T=80T=160T=500T=80T=160 T=500
VAR(2) 62 63 64 64 64 66
VAR(4) 60 62 64 61 62 64
VAR(10) 60 61 65 60 62 65

Table A.2: Percentage of correct sign for the impact response of the real wage to monetary shocks, median value

across 200 Monte Carlo replications. The DGP is a �exible price, sticky wage model and the VAR includes

output, real wages, hours, in�ation and the nominal rate. VAR(p) refers to the lag length of the VAR.
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Standard deviation of Standard Deviation of Sticky price
Monetary Shocks 10 Markup shocks 10 Flexible wage

times larger Times larger Model

HorizonT=80T=160 T=500 T=80T=160 T=500 T=80T=160T=500
0 90 90 90 50 50 49 100 100 100
1 80 86 88 64 74 77 75 85 94
2 78 80 86 64 73 81 68 76 83
3 72 76 83 62 73 80 61 69 78
4 68 72 81 59 72 83 59 63 70

Table A.3: Percentages of correctly signed real wage responses to monetary shocks; median value across 200

Monte Carlo replications. The DGP in the �rst two panels is a �exible price, sticky wage model and the

VAR has two lags and includes output, real wages, hours, in�ation and the nominal rate. The DGP in the

last panel is a sticky price, �exible wage model and the VAR has two lags and includes output, real wages,

hours, in�ation and the nominal rate.

2 lags 4 lags 10 lags

HorizonT=80T=160T= 500T=80T=160T= 500T=80T=160T= 500

0 100 100 100 100 100 100 100 100 100
1 82 89 97 78 86 95 76 87 96
2 75 78 90 63 66 85 60 71 83
3 65 69 84 53 59 70 52 57 72
4 60 61 76 59 55 63 47 54 59

Table A.4: Percentages of correctly signed real wage responses to monetary shocks; median value across 200

Monte Carlo replications. The DGP is the sticky prices, �exible wage model; the VAR includes output,

in�ation, nominal rate and hours. The correct representation of the DGP is a VAR(2).


