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Abstract

Empirical Mode Decomposition (EMD) was developed late last century, but has
still to be introduced to the vast majority of economists. EMD was originally one of
the components of Hilbert Huang Transform (HHT) which was a process of extracting
the frequency mode features of cycles embedded in any time series using an adaptive
data method which can be applied without making any assumption about stationarity
or linear data-generating properties of time series. This paper introduces economists
to the two constituent parts of the HHT transform, namely EMD and the Hilbert
Spectrum, and also a new variant of this methodology, Ensemble EMD (EEMD).
Several illustrative applications using the methodology are also included.
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1 Introduction

Empirical analysis using tools from the frequency domain is a woefully under-researched

area in economics. Economics tends to focus on the time dimension of empirical macroeco-

nomics, but developments in frequency domain techniques have extended far beyond the

simple spectral analysis originally introduced into the mainstream by Granger through his

Granger and Hatanka (1964) and subsequent Granger (1966) contribution. Developments

in signal processing and other disciplines have taken place which now give the researcher

much more advanced techniques than the very basic spectral analysis that is usually glossed

over in a typical graduate econometrics course. Time-frequency analysis has been the area

where most value-added is likely to be found for economists, notably in wavelet analysis

(see Crowley (2007)), and more recently empirical mode decomposition, the subject matter

of this article. The latter, although already over 10 years old, has been, to my knowledge,

completely ignored by economists. This article seeks to rectify this deleterious situation, by

introducing economists to Empirical Mode Decomposition (EMD) and the Hilbert-Huang

transform (HHT), a relatively new and innovative technique together with a novel new

variant that was introduced three years ago.

What makes frequency domain analysis important in empirical macroeconomic and

financial analysis? Simply put, the time horizon and the interrelationships between macro-

economic and financial variables at different time horizons. In time-series analysis we often

search (by using different econometric specifications) for the most appropriate "fit" for the

time-series data at hand, and thus attempt to better understand the evolution of the series

over time and the drivers behind the series. In time-frequency domain we can take this one

step further - we can attempt to understand the evolution of the series over different time

horizons and the drivers behind the series at different time horizons. Given the ongoing

developments in time-frequency analysis there is a possibility that we might also be able to

uncover meaningful sub-series in the data operating at different frequencies.

The only applications of EMD and HHT to economic and financial time series to date

can be found in Huang and Shen (2005), Zhang, Lai, and Wang (2007) and Crowley (2008),

and of these only one so far appears in journal format. Section 2 explains the technique of

empirical mode decomposition, section 3 applies the technique to economic and financial

time series, while section 4 concludes.
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2 The Hilbert-Huang Transform and Empirical Mode
Decomposition

2.1 Background

Identifying the different frequencies at work in economic variables was pioneered by Granger

(1966) and has recently been updated by Levy and Dezhbakhsh (2003b) and Levy and

Dezhbakhsh (2003a). Both of these latter two articles use traditional spectral analysis

techniques, but this approach assumes that time series are stationary and linearly generated,

so although the findings are consistent with Granger’s this is hardly surprising, given that

spectral analysis should not be applied to non-stationary time series1. Both wavelet analysis

and HHT allow the use of non-stationary data, and although wavelet analysis assumes

that variables are linearly generated, HHT, EMD and its variants, do not. Table 1 gives

a summary of the different frequency domain methods available to researchers and the

implicit assumptions used by each method.

One of the main problems with using traditional spectral analysis is that economic and

financial variables and rarely both globally and locally stationary, and although using time-

varying spectral analysis is clearly superior to using traditional spectral analysis spurious

results may still result from local non-stationarities and from asymmetries in cycles. Wavelet

analysis (see Crowley (2007)) is clearly superior to spectral analysis for dealing with most

economic and financial variables, but problems still exist, as with discrete wavelet analysis

cycles might not always lie within the dyadic frequency ranges imposed by scale separation,

and so might lie on the border between these ranges hence with some "bleeding" between

the scales might appear in more than one crystal. Also with continuous wavelet analysis

there might be problems of frequency resolution and there are also usually only symmetric

wavelet functions available "off the shelf", limiting the usefulness for economic and financial

series2.
1This is further explored in Crowley (2010) where it is clear that Granger’s "typical shape" is not typical

at all - it is due to a misuse of spectral analysis to analyze non-stationary variables.
2Although see Aguiar-Contraria and Soares (2010) for a primer and software which implements several

different wavelet forms for use with the continuous wavelet transform.
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The EMD method introduced by Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung,

and Liu (1998), resolves many of these problems by allowing non-stationary series (both

globally and locally), non-linearly generated processes and also asymmetric cycles. The

method has subsequently been applied to many areas in physics, mechanics, engineering,

astronomy and the environmental sciences, and the US National Aeronautical and Space

Administration (NASA) has taken great interest in the new technology, patenting a special

application of the method. Unlike both spectral methods and wavelets, the EMD method

is entirely empirically based - it has no formal mathematical basis, but rather attempts

to break down the series according to how many frequencies are apparent in the data - in

other words it allows the data to speak for itself rather than imposing certain a priori beliefs

about which frequencies are present at any time within a series. As with any statistical

method, the advantage of it’s "temporal locality" feature has to be weighed against the

fact that the methodology relies on unique extrema, and this can lead to problems of what

Wu and Huang (2008) call a lack of "physical uniqueness".

Since being introduced a decade ago, a small group of researchers have extended and

modified EMD, in a series of publications, notably Huang and Shen (2005) Wu and Huang

(2008) and Huang and Wu (2008), and have launched a journal3 to provide a publication

outlet for applications using EMD and to further advance the EMD methodology. This

has spurred even more developments (such as multivariate EMD) and recently a conference

devoted solely to the HHT and EMD4.

2.2 Methodology

EMD is actually part of a two-step procedure referred to as the Hilbert-Huang transform

(HHT5):

1. Do EMD to obtain intrinsic mode functions (IMFs); and

2. use the Hilbert spectrum to assess instantaneous frequency for each IMF.

The Hilbert transform is not new, but EMD is. The main advantage of using EMD over

other frequency domain techniques is that it not only identifies separate processes at work

3Journal of Adaptive Data Analysis
4See http://ldaa.fio.org.cn/index.html
5Named after Norden Huang who invented the EMD part of the process and David Hilbert who is the

mathematician who originated the notion of a Hilbert spectrum. The methodology was designated HHT
by NASA.
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in a series, but it also separates each of these out and resolves them in time-frequency space.

The IMFs should satisfy the following properties: (1) in the whole data set, the number

of extrema and the number of zero crossings must either equal or differ at most by one;

and (2) at any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero. An exhaustive introduction and comparison

with continuous wavelet analysis is provided in Huang, Shen, Long, Wu, Shih, Zheng, Yen,

Tung, and Liu (1998).

These processes or IMFs could be meaningful in that they represent the separate

processes operating at different frequencies embedded within the data. To quote Huang

and Wu (2008) (p19):

HHT offers a potentially viable method for nonlinear and nonstationary

data analysis, especially for time-frequency-energy representations. It has been

tested widely in various applications other than geophysical research but only

empirically. In all the cases studied, HHT gives results much sharper than most

of the traditional analysis methods. And in most cases, it reveals true physical

meanings.

The essence of the method is to identify the intrinsic oscillatory modes by their charac-

teristic time scales in the data empirically, and then decompose the data accordingly. EMD

does not impose any a priori conditions on the data (such as stationarity or linearity), but

rather allows the data to speak for itself. EMD sifts the data by identifying maxima and

minima in the data so as to identify cycles within the data at different frequencies, using a

spline algorithm as follows:

i) identify maxima and minima of x(t)

ii) generate upper and lower envelopes with cubic spline interpolation emin(t) and emax(t).

iii) calculate mean of upper and lower envelopes:

m(t) = (emax(t) + emin(t))/2 (1)

- this process is shown in figure 1.

iv) the mean is then subtracted from the series to yield a difference variable, d(t):
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d(t) = x(t)−m(t) (2)

v) if the stopping criterion (SC):

T∑
t=1

[dj(t)− dj+1(t)]2

d2j(t)
< SC (3)

is met, where dj(t) is the result from the jth iteration, then denote d(t) as the ith IMF

and replace x(t) with the residual

r(t) = x(t)− d(t) (4)

vi) if the stopping criterion it is not an IMF, replace x(t) with d(t).

vii) repeat steps i) to v) until residual rn(t) has at most only one local extremum or

becomes a monotonic function from which no more IMFs can be extracted.

The EMD process can also be illustrated by a diagrammatic flow chart, as in figure 2.

The resultant decomposition of the series can be written as:

x(t) =
n∑
j=1

cj(t) + rn(t) (5)

where cj(t) represents the jth IMF.

Once the IMFs have been obtained, given the fact that (unlike traditional spectral

analysis which typically uses Fourier analysis with constant frequency) variable frequency

cycles can occur, it is more appropriate to use measures of instantaneous frequency and am-

plitude. This follows on from the observation that cycles can either change within a single

period (known as "intrawave" frequency modulation) or between cycles (known as "inter-

wave" frequency modulation), or with a combination of both types of modulation. Spectral

analysis can detect the latter, particularly when using time-varying spectral analysis, but

it cannot detect the former, and yet the former is likely, particularly with the non-linear

types of processes that characterize variables found in economics and finance.

The Hilbert spectrum lends itself directly to the task of estimating instantaneous fre-

quency, thus allowing the researcher to account for all types of frequency modulation. In

mathematical terms, for any function x(t) of Lp class, its Hilbert transform y(t) is:
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Figure 1: The spline-envelope process under EMD for a hypothetical series

Figure 2: Flow chart of EMD sifting process
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y(t) =
1

π
P

∫ +∞

−∞

x(τ)

t− τ dτ (6)

where P is the Cauchy principal value of the singular integral. The Hilbert transform y(t)

of any real-valued function x(t) will yield the analytic function:

z(t) = x(t) + iy(t) = a(t) exp [iφ(t)] (7)

where i =
√
−1, a(t) represents the amplitude and φ(t) the phase (φ(t) = arg(x(t))). a(t)

is then given by

a(t) =
(
x2 + y2

)1/2
(8)

and:

φ(t) = tan−1
[y
x

]
(9)

Instantaneous frequency, ω, then is given by:

ω =
dφ

dt
(10)

The instantaneous frequency introduced here is physical and depends on the differentiation

of the phase function, which is fully capable of describing not only interwave frequency

changes due to nonstationarity but also the intrawave frequency modulation due to nonlin-

earity. The Hilbert transform as applied to each IMF can now be expressed as:

z(t) =
t∑
j=1

aj(t) exp

[
i

∫
ωj(t)dt

]
(11)

so that the instantaneous amplitude aj(t) can be separately extracted from the instanta-

neous phase ωj(t) for each IMF and combined into a Hilbert (amplitude) spectrum, H(ω, t)

(see Huang and Shen (2005)). The power (or energy) spectrum is given by [H(ω, t)]2 so

accordingly the marginal average power spectrum is:

h(ω) =
1

T

∫ T

0

H2(ω, t)dt (12)

2.3 Other issues

The first concern, as with spectral analysis and wavelet analysis, relates to end effects.

At the beginning and at the end of the time series the cubic spline is not defined, so
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where the cubic spline fitting can have large swings. Left by themselves, the end swings

can eventually propagate inward and corrupt the whole data span especially in the low-

frequency components. A numerical method of adding extra waves to eliminate the end

effects has been implemented.

The second concern is with "mode mixing", which is defined as a single IMF either

consisting of signals of widely disparate scales or a signal of a similar scale residing in

different IMF components. Usually mode mixing is identified by the frequencies of different

(usually adjacent) IMFs intersecting each other. To overcome this problem a new noise-

assisted data analysis method was proposed, the ensemble EMD (EEMD), which defines

the true IMF components as the mean of an ensemble of trials, each consisting of the signal

plus a white noise of finite amplitude. More details can be obtained from Wu and Huang

(2008). In this study EEMD is utilized, with parameters specified for each example.

The third concern relates to that of the Bedrosian theorem6. To summarize from Huang

and Wu (2008), there are problems in defining the instantaneous frequency with the Hilbert

spectrum unless the amplitude of the fluctuations are relatively constant - something that is

rarely satisfied in empirical data. Therefore a method was developed in ?) which normalizes
the IMFs and then the phase function of each IMF is measured using the arc-cosine of the

normalized data. This method is called the “direct quadrature” (DQ) method and it is

used in the calculation of the frequencies for most of the examples given below, although

implementation using the original Hilbert spectrum is also shown for selected variables.

3 Illustrative Applications

In this section HHT, EMD and EEMD are applied to a selection of financial and economic

time series. Data sources are listed in an appendix.

3.1 Financial time series

3.1.1 The Dow Jones Industrial Average

Monthly data for the Dow Jones Industrial Average: 1896-2011 are first used. The data is

transformed by taking natural logs, and is displayed in figure 3. The recent fall in the index

is clearly significant, but nevertheless the stockmarket crash of 1929 clearly dominates the

6The Bedrosian theorem states that the Hilbert transform for product functions can only be expressed
in terms of the product of the low-frequency function with the Hilbert transform of the high-frequency one
if the spectra of the two functions are disjointed.

Page: 10



series. No further transformation of the series is done, and the IMFs obtained as well as the

residual are shown in figure 4. Nine IMFs are obtained (as numbered down the left hand

side of the figure), with the residual shown superimposed onto the original data at the top

of the panel in red. EEMD was used with white noise added with 30% of the volatility of

the series as a whole, and 800 iterations were done on to provide the ensemble for averaging.

The residual obviously indicates the trend of the series, with more marked increases in the

series shown by two accelerating waves which begin in the 1950s and repeat in the 1990s.

Clearly, unlike what one would obtain with traditional spectral analysis, non-regular cycles

are extracted as is particularly noticeable with IMFs 3, 4 and 5, while IMFs 1 and 2 appear

to contain mostly noise. Interestingly IMFs 7 and 8 appear to have relatively regular cycles

and IMF 9 seems to consist of one small amplitude undulation from the early 1940s to

1960s so is not really considered cyclical activity. The longest cycle detected in the data,

then, is in IMF8, and it is roughly a 40 year cycle with persistent and roughly constant

amplitude.

The quality of the decomposition is dependent on the frequency resolution of the IMFs

as noted above, and this should also be apparent from the frequency resolution which is

plotted in figure 5. Clearly nearly all the IMFs are well resolved, but there is some mode

mixing between IMF7 and 8 and IMF3 and 4 - nevertheless, apart from this there is little

mode mixing among other IMFs. IMF9 hardly contains any identifiable cyclical activity,

so the longest cycle in the data is only picked up at around a 40 year frequency.

Figure 6 shows a significance test for the cyclicality of the IMFs versus white noise

which is generated at a variety of different periodicities. As the mean period is extended the

energy levels drop off, and confidence intervals can be constructed around a decomposition

of white noise. These are displayed in the figure by a widening green cone and these green

lines represent the 1% and 99% significance points according to what would be expected

with white noise. The red stars then indicate the energy of IMFs 2-9 and in this instance

they are all significantly different from what would be expected with white noise, but once

again IMF8 is shown to be a particularly strong cycle at the 40 year frequency.

In figure ?? the equivalent results using EMD are presented - here the Hilbert spectrum
( - with the colour bar on the right hand side of the figure showing that low energy levels

are in blue, middling energy levels in red and high energy frequencies in yellow) is shown

and it is clear that the lower frequency IMFs tend to generally contain more energy than

the higher frequency IMFs, although there are circumstances (for example around 1915 and

between 1920 and 1930) when shorter cycles appeared to have more energy. IMF5 appears
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Figure 3: The Dow-Jones Industrial Average (DJIA) from 1896 to 2011

to correspond most closely to the business cycle, particularly as it has troughs in around

1993 and 2001. Lastly figure 8 shows the marginal Hilbert power spectrum which indicates

that the IMF with most consistent energy lies at roughly a 40 year cycle. Beyond this,

there is nothing evident in terms of the IMFs from the original data.

3.1.2 The US dollar - British pound exchange rate

Figure 9 gives the US dollar-British pound exchange rate from March 1973 to June 2011

using monthly data, and including the precipitous fall in the pound during the first half

of 2009. The data obviously displays some irregular wave-like features, with both irregular

amplitude and frequency. Figure 10 shows that the EEMDmethod (with 0.3 of the standard

deviation and 500 runs), extracts 7 IMFs, with the possibility of another cycle remaining in

the residual ( - note that unless a full cycle is observed, any incomplete cycles remain in the

residual). IMF5 clearly extracts the general cycle directly observed in the data, particularly

from 1973 to 1988. Interestingly though 6 other IMFs are apparent in the data, of various

frequency and amplitude. What is also noticeable is that during the short-lived period

when sterling entered the ERM of the EMS7 the volatility observed in IMFs 1 to 3 clearly

increased in a synchronized manner, but the lower frequency IMFs were not affected. Also

it is interesting to note that the current fall in the value of the pound has been contained

mostly in IMF4, with a smaller amount appearing in IMF3.

7The exchange rate mechanism of the European monetary system.
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Figure 5: Instantaneous frequencies for DJIA IMFs
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Figure 6: Significance test of DJIA IMFs against white noise
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Figure 8: Marginal Hilbert power spectrum for DJIA IMFs

Figure 11 shows the instantaneous frequency for each IMF and it appears as though

once again the measure of instantaneous frequency is well measured for the lower frequency

IMFs, but the 1980s saw some mode mixing occurring. In figure 12 the test of significance

of the IMFs compared to white noise is implemented, and all are found to be significant.

The Hilbert spectra are shown in an appendix.

3.2 Economic time series

3.2.1 US industrial production

In figure 13 (natural) log of monthly US industrial production is shown from 1919 to March

of 2011. The series is clearly highly volatile before around 1947 but then appears to exhibit

much less volatility in the post-war era. It is well known that recessions in the US usually

tend to adversely affect the manufacturing sector much more than other sectors, so the

post-war recessions can be very clearly seen in the data. Figure 14 shows the extracted

IMFs for the series8, 8 in all, with the business cycle not apparent in any one particular IMF

but apparently a result of fluctuations in several different IMFs9. There does appear to be

the possibility of a weak long cycle in the data, with roughly an 80 years cycle, but apart

from that only a cycle operating at roughly a 20-25yrs cycle length. This is an important

8Here EEMD is used with 800 replications using 0.8 of the standard deviation of the series.
9This is a result that mirrors the result shown for US growth in Crowley (2010).
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Figure 9: US dollar-British pound exchange rate
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Figure 10: IMFs for the US dollar-British pound exchange rate
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Figure 11: Instantaneous frequency for the IMFs from British pound - US dollar exchange
rate
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Figure 12: Significance test of British pound exchange rate IMFs against white noise
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Figure 13: US industrial production (natural log)

result, as it implies that higher frequency cycles, along with the business cycle account

for most of the fluctuations in industrial production data for the US10. With the higher

frequency IMFs, IMF1 shows no significant post-war change, and has very little energy, but

IMFs 2 and 3 exhibit reduced volatility from the early 1980s with IMF3 not altering in the

1980s but virtually disappearing from around 1990 onwards. This tends to suggest that the

"great moderation" only affects two cycles in growth in industrial production, but longer

term business cycle fluctuations appear not to have been affected. This result also mirrors

the results of Crowley and Hughes Hallett (2011).

As figure 15 illustrates, the frequencies of the IMFs are fairly well separated, but there

are some instances when "mode mixing" occurs. What is of interest here is if there are

changes in cycle frequencies that occur before and after WWII. From figure 15 it appears

there was very little change in average frequency cycles for nearly all IMFs pre- and post-

WWII with perhaps the exception of IMF3. Figure 16 shows the significance test for the

IMFs, and all appear to be significant when tested against white noise. Hilbert spectra are

for this variable are relegated to the appendix.

10This is important, as it directly contradicts the results found in Granger (1966).
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Figure 14: IMFs for US industrial production
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Figure 15: Instantaneous frequencies for IMFs from US industrial production
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Figure 16: Significance test of US industrial production IMFs against white noise

3.2.2 UK Retail Price Index

The log change in the UK retail price index (RPI) appears to exhibit considerable cyclical

fluctuations, as shown in figure 17, but these have tended be less volatile since the early

1990s. In terms of stationarity, inflation is usually considered a non-stationary variable

because of inflation persistence, and this can clearly be seen in the clear upward move in

the inflation rate during the 1970s.

Figure 18 shows that EEMD extracts 8 IMFs and a inverted U-shaped residual11, show-

ing that inflation has dropped to consistently low long-term levels ( - despite the fact that in

the short term inflation appears to have increased in the last 2 years). IMFs 1 and 2 appear

to just show high frequency noise, but IMFs 3 and 4 appear to include bursts of cyclical

volatility12, some with large amplitude. IMFs 4 and 5 contain most of the momentum in

the series, with IMF5 containing a 3 year cycle, with IMF4 exhibiting a similar cycle but

at a higher frequency. IMF6 appears to contain a very irregular roughly 12 year cycle, with

peaks appearing just before recessions, which as inflation is procyclical.might be expected.

IMF7 is obviously a very strong cycle as well, and has a length of roughly 22 years, but

since the 1990s, it is curious here that IMF7 has essentially disappeared. A very weak 30

year cycle is also apparent in IMF8.

11The EEMD parameters were set at 30% of standard deviation and 500 iterations were completed.
12In the signal processing literature these short bursts or packets of volatile movements in the series are

often called "chirps".
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Figure 17: UK log differenced RPI

In terms of frequency, figure 19 suggests that IMFs are well separated for the most

part, but that IMFs 5 and 6 mode mix in the 1960s and 1980s and IMFs 3 and 4 mode

mix in the 1960s and 1990s. IMF6 operates at roughly a 5 year cycle while both IMF6

and 7 operate at business cycle frequencies from the mid-1980s onwards. IMF8 operates at

very long cycles of around 40 years. Figure 20 offers a significance test of the IMFs, and

once again all the IMFs are significant in energy against white noise. Hilbert spectra are

relegated to an appendix.

3.2.3 UK M0 monetary aggregate

Given that the previous section looked at inflation, it is informative to look at a UK

monetary aggregate to see if we get any similar frequency fluctuations evident in the data.

Figure 21 shows the M0 series from 1949 through to 2006 when the monthly series was

discontinued. The peaks in the series in the 1970s have a striking correspondence to the

peaks seen in the UK retail price index. Figure 22 shows that EEMD yields 7 active IMFs,

with IMF8 having very little fluctuation. In the higher frequency IMFs, there appears to be

less volatility post-early-1980s whereas for the lower frequency IMFs although amplitudes

have reduced since the 1980s they do not appear to be much different from the 1950s or

1960s. In terms of frequencies shown in figure 23, the IMFs appear to be fairly well resolved,

Page: 21



1950 1960 1970 1980 1990 2000 2010

Figure 18: IMFs for UK RPI

1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
yc

le/
ye

ar

IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Figure 19: Instantaneous Frequency of IMFs for UK RPI
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Figure 20: Significance of UK RPI IMFs vs white noise

although there is a similar amount of mode mixing compared with the UK retail price index.

The business cycle appears to be contained in IMF5 and to a lesser extent IMF6 given their

synchronicity around certain downturns in economic activity.

Figure 23 shows instantaneous frequencies for each IMF, and there is good resolution

except for the latter half of the 1980s where there is substantial mode mixing. It is also

clear that IMFs 5 and 6 appear to operating within the limits of the business cycle, but

they appear to operate at either end of the band that would be expected to contain the

business cycle. Figure 24 the IMFs are tested against white noise, and in this instance

IMF2 appears to contain only white noise, whereas IMFs 3 to 8 contain cyclical activity

that is significant.

One interesting corollary of this analysis relates to the long run relationship between

money and prices in the UK. There does appear to be long cycles in both inflation and the

monetary aggregate for the UK, and with the very long cycle (IMF6) in both cases, inflation

appears to lag movements in the monetary aggregate by approximately 2 to 3 years. This

mirrors results recently found by Benati (2009). The relationship between other IMFs in

the two variables is much less clear though, and merits further investigation.
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Figure 21: Log change in UK M0 monetary aggregate
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Figure 22: IMFs for UK M0
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Figure 23: Frequency of IMFs for UK M0
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Figure 24: IMF significance for UK M0 vs white noise
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4 Conclusions

EMD and the HHT are relatively new techniques which were introduced just over a decade

ago. The approach offers a new technique for use in frequency domain analysis by using an

adaptive data algorithm which accurately extracts cycles embedded in the data. The HHT

consists of two stages - first sifting the data using empirical mode decomposition, which

extracts the different embedded frequency series (known as IMFs) - and then transforming

the data using the Hilbert transform so as to analyse the data in terms of frequency domain

measures. The main advantages of the method are that it does not assume stationarity

(either globally or locally), and does not assume any data generating process, so can cope

with non-linear data. Spectral analysis, the traditional workhorse of frequency domain

analysis assumes both stationarity and a linear data generating process so is not suitable

for the analysis of many economic variables. The method is still in development, with a new

variant, the EEMD introduced in 2008, but nevertheless is available for use by economic

and financial researchers using widely available software.

Several examples using both economic and financial variables were presented using the

software currently available to researchers. The technique revealed several interesting re-

sults:

i) with Dow-Jones industrial average stockmarket data, there appears to be a 30-40 year
cycle, as well as a cycle operating at or near the business cycle;

ii) with the US dollar-British pound exchange rate, there appears to be a 15-20 year cycle
operating;

iii) with US industrial production data, there appears to have been a waning of a 25 year
cycle, but a roughly 10 year cycle persists, even though higher frequency cycles have

become much less volatile since the 1980s. There is also the possibility of a much

longer 80 year cycle in the data, but it is very weak;

iv) with UK inflation and M1 data, there appears to be a long cycle of around 20-25years
operating in the data - with the monetary aggregate leading the inflation rate by a

period of roughly 2 to 3 years.

In terms of future research, there is clearly much that can be done. One forthcoming

paper by this author concerns application of the method to US growth data spanning more

Page: 26



REFERENCES

than a hundred years in order to confirm the lack of a long cycle in growth. Other possi-

bilities are clearly evident - the relationship of prices and money as well as the relationship

between consumption and investment, for example.
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Appendices

A Data sources

The Dow Jones Industrial Average was sourced from the Bank of Finland stockmarket

database.

The US dollar - British pound exchange rate was sourced from the Bank of Finland

exchange rate database.

US industrial production was sourced from the Bureau of Economic Analysis, Dept of

Commerce.

UK RPI was sourced from the National Statistics Offi ce, UK.

UK M0 was sourced from the Bank of England monetary database.

B Software resources

Software for HHT exists from a variety of different sources:

i) The US National Aviation and Space Agency (NASA) Goddard Space Flight Center
has three issued patents, one published patent application, and one copyright on this
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method. A MATLAB based package is available for use through a contracter at

http://www.dynadx.com/index.htm. This only executes EMD.

ii) Alan Tan has contributed code to MATLAB central which requires both the MATLAB
signal processing and spline toolboxes, and this is located at

http://www.mathworks.nl/matlabcentral/fileexchange/19681

iii) Patrick Flandrin has MATLAB/C code on his website at

http://perso.ens-lyon.fr/patrick.flandrin/emd.html

iv) EEMD code is available from the Research Center for Adaptive Data Analysis which

is lead by Dr. Norden Huang in Taiwan. The website is at

http://rcada.ncu.edu.tw/research1.htm

B.1 Hilbert spectra

B.1.1 US dollar-British pound exchange rate

The results of using EMD are very similar to EEMD as shown in the main text. The

Hilbert spectrum for the IMFs is shown in figure 25 and as might be expected, shows that

the large amplitudes of the longer cycles dominate movements in the series while higher

frequency IMFs only appear to gain power over relatively short periods of time (such as in

the early 1990s). Figure ?? shows the marginal power spectrum and shows that the two low
frequency IMFs hold most of the energy in the series, and dominate the shorter frequencies

over the life of the series.

B.1.2 US Industrial Production

Lastly, figures 27 and 28 show the Hilbert spectrum for the IMFs and the Marginal Hilbert

power spectrum for the IMFs. As expected, lower frequencies contain most energy in the

series, and the most noticeable aspect of the Hilbert spectrum is the waning of power in

higher frequencies in 1960 and then in the early 1980s. What is also very noticeable is

that the energy in the lower frequency cycles has not changed much over time. This has

possibly important implications for economic policymakers.- it implies that better economic

policymaking can dissipate the energy that resides in high frequency cycles, but to date, it

doesn’t seem to have affected the energy contained in low frequency cycles, and particularly

the IMFs where the business cycle resides.
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Figure 25: Hilbert spectrum for IMFs of US dollar-British pound exchange rate
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Figure 26: Marginal Hilbert power spectrum for IMFs of the US dollar-British pound
exchange rate
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Figure 27: Hilbert spectrum for IMFs of US industrial production
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Figure 28: Marginal Hilbert power spectrum for IMFs of US industrial production
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Figure 29: Hilbert spectrum for IMFs of UK RPI

B.1.3 UK Retail Price Index

The spectra for UK retail price inflation are shown in figures ?? and ??. Clearly the two
lower frequency cycles contain most energy but then there is also a two year cycle that

is still evident in the data, but the Hilbert spectrum clearly indicates that the cyclical

properties of the data are weaker now than they were in the past.
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Figure 30: Marginal Hilbert power spectrum for IMFs of UK RPI
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