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A Persistence Based Classification of Shocks

Traditional econometrics focuses on the information flow with respect
to time evolution, here we explicitly take into account also the flow of
information under a change of resolution.

This paper proposes a linear decomposition of the economic factors as
a linear combination of past uncorrelated innovations which are
classified by the time of their arrival their level of persistence.

This non-structural decomposition generalizes the Wold
decomposition for stationary time series and the Beveridge-Nelson
(1981) permanent transitory decomposition for non stationary
integrated ones.
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Background Literature

1 BN decomposition: Watson (1986), Morley, Nelson and Zivot (2003),
Proietti (2006), Oh, Zivot and Creal (2006), and Morley (2011)

2 Low Frequency Structural Relations Detection: Muller and Watson
(2008) and Muller and Watson (2009).

3 Time series multiresolution analysis in economics: Ramsey and
Lampart (1998), Gencay and Fan (2008), Gencay and Gradojevic
(2009), Gencay, Selcuk and Whitcher (2001), Daubechies (1990),
Daubechies (1992), Mallat (1989a) and Mallat (1989b).

4 Long Run Risk and Asset Pricing: see the (in)complete list in Ortu
Tamoni Tebaldi (2011).
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What is a resolution?

The time filtration: F = {Fth}t=0,...,bT/hc, an increasing sequence of

σ−algebras Ft′ ⊂ Ft , t ′ ≤ t.

The resolution filtration represents the increase of information when
the frequency of observation is increased:

- define s = blog2 (h0/hs)c with the time maximum grid
spacing hmax and hs = 2−shmax a finer grid spacing

- the resolution filtration is the increasing sequence
B = {Bs}s=0,..,S , of σ−algebras Bs′ ⊂ Bs , s ′ ≤ s.

Traditional time series representation approach: test the likelihood of
a model specification on the finest grid (at the highest resolution)
then a model is automatically specified at any coarser resolution by
conditioning (temporal aggregation).
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Illustration: Time vs Resolution filtration
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Degree of persistence and changes of resolution.

Conditioning under a change of resolution is equivalent to low pass
filtering (averaging).

A measure of persistence is implicitly defined by the resolution
filtration.

Fix minimum resolution scale hmin = 2−Jmaxhmax then a sequence of
resolution scales is defined by hj = 2jhmin.

DEFINITION: A shock has degree of persistence j if it is not
measurable with respect to the σ−algebra BJmax−j−1 but measurable
at scale of persistence BJmax−j , i.e. it is removed by j + 1 applications
of the filter.
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Are we loosing some economic relevant information?
Good reasons for a closer look at the resolution dependence of our observations

Macroeconomics: measurement of structural factors often rely on the
definition of aggregate quantities which are observed at different
frequencies and with different persistence properties (e.g. durability of
consumption).

Decision Sciences: the preferences of the agents are often horizon
dependent (e.g. recursive or hyperbolic preferences, rational
inattention).

Finance: the risk return tradeoff depends heavily on the holding
period (long run risks literature)
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A linear time series model accounting for persistence.

Definition

The dyadic mean operator acting on the time series of observations up to
time t, xt = {xt−k}k∈0,..,+∞, is defined by:

π
(1)
t−k =

xt−k + xt−k−1

2
, π

(j)

t−2jk
=

2j−1∑
k ′=0

xt−k ′−2jk

2j

The time series π
d(j)
t =

{
π

(j)

t−2jk

}
k∈N

is the j − th (decimated) scale

component. Define the detail at scale j , time t − 2jk :

δ
(j)

t−2jk
= π

(j−1)

t−2jk
−
π

(j−1)

t−2jk
+ π

(j−1)

t−2j−1(2k+1)

2
=
π

(j−1)

t−2jk
− π(j−1)

t−2j−1(2k+1)

2

The time series δ
d(j)
t =

{
δ

(j)

t−2jk

}
k∈N

is called the j-th (decimated) detail

component of the time series xt .
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The PBD for a stationary process at fixed time t.

Theorem

Consider the PBD of a stationary time series {xt−k}k∈N with Wold
decomposition xt = µ+ ψ (L) εt . Then:

1 the following decomposition holds for xt :

xt =
+J∑
j=1

δ
(j)
t + π

(J)
t

π
(∞)
t ≡ lim

J→+∞
π

(J)
t = µ

the details
{
δ

(j)
t

}+∞

j=1
define the term structure of shocks observed at

time t.

2 the variance of the rescaled permanent component π
(J)
t converges to

the long run variance.

lim
J→∞

√
Var

[√
2Jπ

(J)
t

]
= ψ (1)
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Example: PBD of consumption growth

Figure: PBD of consumption growth.
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Medium Term Business Cycle (Comin Gertler 2006)

Figure: Component 6 of Consumption growth and TFP
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Redundant vs Decimated PBD

Shocks at scale of persistence j are naturally adapted on a grid with
spacing 2j .

Forcing their detection at higher frequencies induces spurious
correlation effects in the observation

The instantaneous variance underweights the contribution to long run
integrated variance of high persistence components

Definition

The decimated PBD truncated at level J of xt is given by the vector(
δ
d(J)
t , π

(J)
t

)
where δ

d(J)
t ≡

{
δ

(j)

t−2jkj

}
j=1,..,J, kj=0,.,2J−j−1

and π
(J)
t .
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The PBD for an integrated time series

Theorem

Consider yt = {yt−k}k∈0,..,+∞ such that E
[
y 2

0

]
< +∞ and xt = ∆yt

admit the Wold representation xt = µ+ ψ (L) εt with
∑+∞

j=0 jψj < +∞.
Then:

yt − y0 = π̃
(∞)
t +

+∞∑
j=1

δ̃
(j)
t (1)

where the (stationary) details δ̃
(j)
t at any level of persistence j and the

scale component are given by

δ̃
(j)
t = −

+∞∑
kj=0

(
T (∞)
Haar ψ̃

)
j ,kj

εj ,t−2jkj

π̃
(∞)
t = µt + ψ (1)

t∑
s=1

εs .

where T (∞)
Haar is the (infinite) matrix which implements the Haar transform.
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Wold Theorem and the PBD.

Let the Hilbert space (same role of the Hγ (xt) space):

H (xt) =

{
Z =

∑
k∈N

αkxt−k ,
〈
Z 1,Z 2

〉
=
∑
k∈N

α1
kα

2
k

}

metric definition neglects temporal correlations!

Consider the rescaling operator, R = D ◦M the composition of the
dyadic dilation operator D with the dyadic mean M (same role of the
L the lag operator). Then:

H (xt) =
+∞⊕
j=1

R jWR
t ⊕H

(∞)
t,R

R jWR
t =

〈
δ

(j)
t

〉
, RH(∞)

t,R ⊆ H
(∞)
t,R (2)
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The Scale Component is the Beveridge Nelson Trend

The permanent component (stochastic trend) pBN
t of a unit root non

stationary process xt = ∆yt process is that component whose effect is not
expected to decay but “persists” at any horizon (resolution scale).

pBN
t = yt + lim

h→+∞
+E

[
h∑

k=1

∆yt+k − µh | Ωt

]
= yt + lim

j→+∞
E
[
∆2j yt+2jhmin

− µ2jhmin | Bj ∩ Ft

]
hence by CLT for stationary processes:

∆pBN
t ∈ H(∞)

t,R = ∩j=0,..,+∞R jHt (x)
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Co-integration of Dividends and Prices

Figure: Time series of dividends and prices
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Illustration: The scale component and the co-integration
of dividends and prices.

Campbell and Shiller log-linear approximation: the permanent components
of pt and dt are co-integrated with β = [1 − 1]

The detail component δ
(1)
t accounts for most of the transitory

component.

Given an integrated process yt the quantity

π
(J)

b2J rc/
√

2J ⇒ ψ (1)
∫ 1

0 W (r)dr , we estimate π
(J)

b2J rc/
√

2J using

1

T
3
2

∑T
t=1 yt−1.

The estimated coefficients are consistent with the co-integration
relation ....
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BN cycle and level 1 detail

Figure: Comparison between BN cycle and the first detail component

OTT (L. Bocconi University and IGIER) PBD Helsinki October 2011 18 / 27



BN Trend and Stochastic Scale Component

Figure: A test on the scaling properties of the scale component
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GDP and Inflation forecasting

A test on the predictive content of the transitory components we run
the OLS regression of

∆hxt+h = α +
J∑

j=1

βjxt,j + εt+h (3)

where ∆xt+1 = xt+1 − xt is the next period change in US GDP and
xt,j is the transitory component at level of persistence j .
Select xt = 100× log (GDPt) 1947.q1-2010.q4.
Select xt = log (CPIt/CPIt−1) CPIt consumer price index seasonally
adjusted, January 1947 - December 2008.
We measure the adjusted R2 and

G (h) = 100×

(
1− M̂SFE (h)PBD

M̂SFE (h)TC

)
percent gain in forecast accuracy arising from our suggested
decomposition compared to alternative TC (trend-cycle) measures.
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Horse race

Panel A: Final cycle estimates vs. Extended BN

C1 0.568 2.564 0.574 0.186 0.591
(3.62) (1.29) (3.64) (1.758) (4.34)

C2 0.228 0.227 0.218 0.630 0.462
(1.85) (1.84) (1.74) (4.79) (4.19)

C3 -0.172 -0.174 -0.191 0.325 0.050
(-2.32) (-2.34) (-2.22) (1.382) (0.73)

C4 0.031 0.029 0.017 0.273 0.127
(0.60) (0.56) (0.28) (0.66) (2.79)

C5 -0.028 -0.031 -0.031 0.255 -0.020
(-0.78) (-0.85) (-0.84) (0.826) (-0.664)

C6 0.004 0.002 0.006 -0.154 -0.013
(0.16) (0.09) (0.24) ( -0.500) (-0.637)

C7 -0.008 -0.008 -0.008 0.557 0.004
(-0.87) (-0.90) (-0.895) (1.83) (0.489)

C8

Beveridge − Nelson 1.723
(1.01)

Clark 0.341
(0.43)

Hodrick-Prescott 1-sided 0.006
(0.062)

Hodrick-Prescott 2-sided -0.388
(-9.06)

R̄2 0.15 0.15 0.15 0.15 0.35

Table: Predictive regressions for real GDP growth using lag of cycle estimates.
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GDP forecast over multiple horizons

Figure: Adjusted R2 for GDP forecast over multiple horizons
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Gain in GDP forecast accuracy

Figure: Percent gain in GDP forecast accuracy
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Inflation forecast over multiple horizons

Figure: Adjusted R2 for Inflation forecast over multiple horizons
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Gain in Inflation forecast accuracy

Figure: Percent gain in Inflation forecast accuracy
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A comparison with Core Inflation Cogley (2002)

Figure: Percent gain in Inflation forecast accuracy
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Motivation.

In macroeconomics the study of business cycles begins with the
problem of measurement: how to separate macroeconomic data into
trends and cycles.

In finance the risk-return trade-off profile which describes efficient
investment opportunities in the market is strongly dependent on the
investor’s holding period.

These two areas often address the same issues from different
perspectives and languages. Their reconciliation is non trivial and
multiresolution approaches seem to be a promising direction!
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