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Abstract

This paper investigates the effects of contagion in interbank lending networks. I introduce a
new systemic importance measure based on the harmonic distance of Acemoglu et al. (2015b)
and, motivated by their theoretical results also for concentration centrality in Acemoglu et
al. (2015a), compare them to well-known centrality measures already applied in the systemic
risk literature which do not take into account the structure of a contagion mechanism. I
derive an explicit formula of size-adjusted harmonic distances and extend it with the usage
of liquid assets for a heterogeneous banking system. The simulation results on scale-free and
complete networks do not confirm that these new measures would perform better than ”off-
the-shelf” centralities but their performance becomes similar to the best known measures in
case of averaged networks which are applied in central banking analysis. Harmonic distances
and concentration centrality are also capable of identifying systemically important institutions.
Their time variation is also presented in an interbank network. I also test for the scale-free
property of the Hungarian interbank lending network and besides, network measures as systemic
risk indicators are analyzed on Hungarian data.

1 Introduction

Though the analysis of interbank contagion and the effect of institutional failures on a financial
system dates back to 2001, when the seminal paper of Eisenberg and Noe (2001) was published,
the interest in this topic flared up after the global financial crisis, when AIG was bailed out due
to its global systemic importance. Possible asset side channels of contagion are numerous and
can be categorized into two main sets: direct effects and indirect effects. The most well-known
direct effect is interbank lending while indirect effects are channelled through asset prices. Possible
liability side contagion channels are different types of bank runs (Upper, 2011).

In data one can scarcely encounter interbank contagions since institutions in distress are usually
bailed out or are rescued by senior creditors. To overcome this fact, empirical researchers use
simulated data or assume extreme stress events to real life data.

∗Majority of this work has been published as part of the MNB Working Papers series.
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to Péter Fáykiss for his valuable comments and ideas to the research topic, to Henrik Kucsera for the thorough
reading and relevant comments on the paper and to Katalin Varga for her help in the writing of Subsection 8.4 and
general discussions.
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Regulatory response to system-wide stress events has been the intense development of macro-
prudential policy as microprudential interventions were unable to mitigate risks. To see this in
the case of interbank contagion, it is enough to recognize that the interbank network is unknown
from an individual banks balance sheet. From the point of view of individual institutions, they
are susceptible to counterparty risk. They only quantify their partners' default but do not deal
with their own role in the financial system. Systemic risk analysis tackles this flaw as its objec-
tive function is the stability of the whole financial system. Macroprudential tools aim to increase
the resilience of financial institutions with liquidity regulations, improved capital requirements,
and further targeted measures in order to achieve higher loss absorbing capacities in the financial
system.

A financial institution is referred to as systemically important (SIFI) if its default could trigger
a system-wide stress. Imposing higher capital requirements on institutions based on their interbank
exposures and interconnectedness is assumed to improve financial stability and decrease social costs
of a banking crisis. This idea is in the spirit of the assessment methodology for SIFIs proposed by
the Basel Committee on Banking Supervision. Thus interbank contagion and interconnectedness
is a typical focal point of SIFIs as confirmed in the following citation:

”The difficult task before market participants, policymakers, and regulators with systemic risk
responsibilaties such as the Federal Reserve is to find ways to preserve the benefits of interconnect-
edness in financial markets while managing the potentially harmful side effects” Yellen (2013)

The risks of interconnectedness arise mostly in case of unsecured debt contracts: though finan-
cial institutions also conclude repo transactions, these are subject to a lesser degree of counterparty
risk as they are secured by collateral. Therefore, the lack of repayment does not entail as high
losses as an unsecured contract. One of the first papers that deal with bank interconnectedness
through unsecured debt networks of financial institutions is the toy model of Allen and Gale (2000).
They find, similarly to Freixas et al. (2000), that more diversified interbank liabilities lead to a
more resilient system to the default of any bank. However, others argue that an increase in the
number of interconnections leads to an increase in the probability of crisis (Vivier-Lirimont, 2006).
These fundamental papers aim to study the stability of the whole network but it is also a key
question how a large institution influences systemic stability. As Borgatti (2005) pointed out,
when choosing and applying so-called centrality measures we need to identify and investigate the
process taking place in the network and the role of institutions in the network. For the quantifi-
cation of network systemic importance, Battiston et al. (2012) propose a measure deepening the
idea of eigenvector centrality excluding walks from the network in which one or more nodes are
repeated. Soramäki and Cook (2013) also propose an algorithm for identifying systemically impor-
tant institutions. Alter et al. (2015) and Fink et al. (2015) empirically find that eigenvector and
Bonacich centrality are key measures of systemic importance. This is theoretically confirmed in
Acemoglu et al. (2015a) where a new centrality called concentration centrality is also introduced
”which captures the concentration of an agent’s influence on the rest of the agents”, while the
same authors (Acemoglu et al., 2015b) propose a new notion of distance called harmonic distance
between banks which measures the possibility of contagion: ”bank closest to all others according to
our harmonic distance measure that may be too-interconnected-to-fail” and ”systemic importance
of a financial institution is captured via its harmonic distance to other banks, suggesting that this
new notion of network distance should feature in theoretically-motivated policy analyses”. Alter
et al. (2015) investigate centrality based capital allocations in the German banking system. Fink
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et al. (2015) propose a framework to measure capital losses (BSLoss) to the banking system as
the cost of interconnectedness and find high correlation between the costs and certain centrality
measures. However, the so-called SIFI scores, the official measure for assessing systemically im-
portant financial institutions, have low correlation. This underpins the investigation of centrality
measures.

The goal of this paper is to measure the performance and behaviour of harmonic distance and
concentration centrality by quantifying systemic importance of institutions in case of individual
defaults. A default of a liquidity providing institution may also give rise to liquidity shortage in
the system as a whole. I do not intend to investigate this situation; on the other hand, I would
like to deal with the case when a bank triggers a cascade only if it cannot meet its obligations.

The rest of this paper is structured as follows. In Section 2 I introduce the basic notations and
centrality measures that have been used to measure systemic importance in networks. In Section
3 I refresh the underlying network equilibrium model of interbank payments and its generalized
form. In Section 4 I summarize the main contributions of the two papers of Acemoglu et al.
(2015a); Acemoglu et al. (2015b) that are related to the measurement of systemic importance of
financial institutions and as an own result I propose an explicit formula for their measure harmonic
distance. In Section 5 I extend the definition of harmonic distance with more flexible scaling of
heterogeneous banks. In Section 6 I elaborate the problem of weakly connected networks and
harmonic distances, introduce a generation process of artificial interbank networks and present
the calculation of implied losses when a bank defaults. The co-movement of these implied losses
and systemic importance measures are analyzed in Section 7, while Section 8 tests for the scale-
free property of the Hungarian interbank lending network, demonstrates the behaviour of these
measures in time and last but not least, shows an application for systemic stress indication. An
explanation of results is presented in Section 9. Section 10 concludes.

2 Basic notations and centrality measures

A network can be represented by a graph of vertices and edges G(V,E). Two vertices are neighbours
if there exists an edge connecting them. N(i) is the set of neighbours of vertex i. I will alternatively
call vertices nodes. In case of financial networks nodes are financial institutions and edges represent
liability connections among them. I will represent networks in the common way: the undirected
adjacency matrix contains the undirected existence of connections among institutions as indicators,
directed edges are represented in the directed adjacency matrix in the same way. In the presence
of edge weights, indicators are substituted by real numbers, and I obtain the undirected weighted
and directed weighted matrices of financial networks.

Centrality measures are used to quantify the importance of a node in a network. Several
measures have been introduced in the literature, from natural ideas to more complicated ones.
In the following I summarize some of the most frequently used centralities and the connections
between them.

In the undirected adjacency network represented by matrix A, for a given node i the degree is
the number of nodes that are linked to i, i.e. the sum of rows of the adjecency matrix:
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Figure 1: The aggregated Hungarian interbank lending network in 2015

di =
n∑

j=1

ai,j = (A · 1)i,

where the multiplication by a vector of ones takes the sum of rows of the preceding matrix. In the
undirected, weighted network W for a given node i the weighted degree is the sum of the weights
of edges that are connected to node i,

wi =
n∑

j=1

wi,j = (W · 1)i.

Note that both degrees are the (weighted) number of steps from node i while a step is a special
path of length 1. The number of steps of any length will come up at Bonacich centrality.

In the undirected network W the closeness of node i is given by the reciprocal of the maximal
distance from all nodes in the network,

ci =
1

maxj d(i, j)
,
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where d(i, j) denotes distance between node i and j, i.e. the minimum length of paths between
them. Intuitively, the closeness of a node is high if its distance from other nodes is low, therefore
it is close to all vertices in the network.

Betweenness is the number of shortest paths that contain a given node i. Paths of length 1 are
excluded.

Let vi denote the eigenvector centrality of node i which is implicitly defined by

vi =
1

λ

∑
j∈N(i)

vj ,

that is, the importance of a node is proportional to the sum of importances of its neighbours. With
the help of the adjacency matrix,

vi =
1

λ

∑
j∈N(i)

vj =
1

λ

∑
j

ai,j · vj ,

which in matrix notation becomes A ·v = λ ·v, thus v is an eigenvector of matrix A. As one needs
v to be elementwise positive, one chooses the eigenvector corresponding to the maximal eigenvalue.
The Perron – Frobenius Theorem (see Appendix A for the exact statement) guarantees that the
chosen vector is elementwise positive.

Bonacich centrality (Bonacich, 1987; Bonacich and Lloyd, 2001) is based on the idea of eigen-
vector centrality but has two flexibility parameters α and β,

bi(α, β) =
∑
j

α + β · ai,j · bj(α, β),

which in matrix notation after rearranging turns into

b(α, β) = α · (I− βA)−1 · 1. (1)

Note that for the special case α = 0, β = 1/λ in the definition Bonacich centrality is equal
to eigenvector centrality and equation (1) is applicable only for α ̸= 0 and β < 1. Let B =
(I− βA)−1 = bi,j . This centrality has an important interpretation. By using the Neumann series
representation of B,

b(α, β) = α ·
∞∑
k=0

βkAk · 1.

If one looks at β < 1 as a probability, bi is the expected number of paths from node i if every
step has a probability β. From this point of view, Bonacich centrality is a closeness measure.
Moreover, also a generalization of degree as being the expected number of paths of any length
from the corresponding node. Choosing α = β is a special case also called Katz centrality.

Lemma 1 ((Bonacich and Lloyd, 2001)). Eigenvector centrality is proportional to a limit of
Bonacich centrality:

lim
β→

(
1
λ1

)
−

(1 − βλ1) · b(1, β) ∝ v,

where λ1 is the largest eigenvalue of A.
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For proof, see Appendix A.
All centralities are normed to range between 0 and 1. Degree centrality is divided by the

complete network’s number of edges, n · (n − 1)/2, weighted degree is divided by the sum of
repayments in the whole network, closeness is between 0 and 1 by definition, betweenness is divided
by the maximum number of shortest paths in a complete network, (n− 1) · (n− 2)/2. Eigenvector
centrality is divided by the 2-norm of the eigenvector.

At this point I refer to the paper of Alter et al. (2015) to emphasize the empirical usefulness of
eigenvector centrality. They are investigating capital requirements in a way of capital reallocation
in the German banking system with their main focus on interbank contagion and correlated credit
exposures of financial institutions. In case of defaults, individual bankruptcy costs are proportional
to total assets. The main goal is to compare two types of capital allocations. The first one
focuses only on individual portfolio risk (VaR approach, benchmark), while the second one also
takes into account the banks interconnectedness through interbank loans. In the latter case, the
(VaR) benchmark capital requirement is reduced with a fixed fraction. The aggregate reduction
is reallocated among banks according to their centrality (several centralities are tested) in the
interbank network. Their main contribution is that they find adjacency eigenvector centrality the
best measure as its expected bankruptcy cost is about 14 percent lower than in the benchmark
case for the optimal reduction.

Fink et al. (2015) in their stress test setup, model the credit quality channel of interbank
contagion. They mimic the capital management of a bank by regressing its Tier 1 capital ratio
on the debtors PDs. Also, the change in the creditor banks capital ratio changes its own PD. The
model is very flexible in defining the default event and balance sheet losses are sensitive to smaller
shocks of a bank. Their related finding is that the measure of total balance sheet losses during a
contagion mechanism highly correlates with eigenvector-like measure Bonacich centrality.

3 Model setup

In this section I introduce the theoretical framework of Acemoglu et al. (2015a); Acemoglu et
al. (2015b), which are fundamental papers in the understanding of how time-invariant financial
networks work. I start from a more general representation of the so called generalized economic
networks, the special case of which is financial contagion in interbank networks.

3.1 Generalized economic networks

Let N be an economy of n agents {1, 2, . . . , n}. An agent i has a state xi (xi ∈ R, i ∈ N) which
can be output, investment or liabilities. For an f continuous and increasing function let

xi = f

 n∑
j=1

wi,j · xj + εi

 , (2)

which shows that states are interdependent due to strategic reasons, technology constraints or
contractual obligations. They call f the interaction function which captures the interaction between
the agents of the economy, εi are i.i.d. agent-level shocks with mean 0 and variance σ2. wi,j is the
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sensitivity of agent i to the state of agent j. Let W = {wi,j}ni,j=1 denote the matrix of sensitivities.
They naturally assume that rows sum up to 1, i.e.

∑n
j=1wi,j = 1.

The economy is said to be in an equilibrium state if for a given realization of shocks (ε1, ε2, . . . , εn)
equation (2) holds simultaneously for all i. They prove that equilibrium exists and is unique with
the method of fixed point iteration.

The macro state of the economy is y = g (h(x1) + h(x2) + . . . + h(xn)), where g is the aggre-
gation function. (g, h : R → R)

3.2 Financial contagion

The phenomenon of financial contagion is a special case of the above general setup (next to several
others in Acemoglu et al. (2015a)). Agents are banks and the connections are unsecured debt
contracts. For the sake of simplicity each bank i’s total claim size is ξ and the weight of it on bank
j is wi,j , therefore the claim on bank j is wi,j · ξ. Assume that W is doubly stochastic, that is∑n

j=1wi,j =
∑n

i=1wi,j = 1. This ensures equal total claim size for all banks i.
After the realization of a shock εi, banks have to pay back their loans. A bank defaults if it

can’t meet its liabilities. If yi,j is the repayment of a loan from j to i, the cash flow of bank i is
given by

ci = ei +

n∑
j=1

yi,j + εi,

where e is outside assets. If ci ≥ ξ, bank i can meet its liabilities and therefore yj,i = wj,i · ξ for all
j. Otherwise, if 0 < ci < ξ the bank defaults and the creditors are repaid only ci proportionally,
yj,i = wj,i · ci. Thus an implicit equation can be set up:

yj,i =

[
min

{
wj,i ·

(
ei +

n∑
k=1

yi,k + εi

)
, wj,i · ξ

}]+
,

where [·]+ = max{·, 0}. Summing up all over j and defining yi =
∑n

j=1 yj,i as the total repayments
of bank i one gets

yi =

[
min

{(
ei +

n∑
k=1

yi,k + εi

)
, ξ

}]+
=

[
min

{(
ei +

n∑
k=1

wi,k · yk + εi

)
, ξ

}]+
.

From this equation system it is easy to see that for the interaction function f(x) = [min{x+e, ξ}]+,
financial contagion is a special case of generalized economic networks.

4 Model implications

This section contains some main results of Acemoglu et al. (2015a); Acemoglu et al. (2015b) about
the effect of shocks on agents and macro state, and a new measure called harmonic distance for
financial contagion. I also present some additional theoretical results on a more general size-
adjusted harmonic distance.
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Figure 2: The graph of f(x) = [min{x + e, ξ}]+ for positive liquid assets e

4.1 Series expansion

It is natural question how a shock to agent p affects the state of agent i, therefore one is interested in
the value of ∂xi

∂εp
The authors examine the case of small shocks, smooth interaction and aggregation

functions then apply Taylor expansion around the point 0. By simply differentiating equation (2),

∂xi
∂εp

= f ′

 n∑
j=1

wi,j · xj + εi

 ·

 n∑
j=1

wi,j ·
∂xi
∂εp

+ 1{p = i}

 .

Evaluating at εT = (ε1, . . . , εn) = 0 and rearranging the equation leads to the linear approximation

∂x

∂εp

∣∣∣∣
ε=0

= f ′(0) · (I− f ′(0) ·W)−1 · ep, (3)

where ep is the vector of zeros with one at the pth coordinate. Note that (I − f ′(0) ·W)−1 is a
very similar matrix to that in equation (1) with α = β = f ′(0), A = W and thus equation (3) is

∂x

∂εp

∣∣∣∣
ε=0

= α ·B · ep,

or equivalently

∂xi
∂εp

∣∣∣∣
ε=0

= α · bi,p.

Equation (3) is a simple differential equation system for vector x. One can check that the solution
is

xi = α ·
n∑

p=1

bi,p · εp ∀i
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or x = α ·B · ε = f ′(0) · (I− f ′(0) ·W)−1 · ε.
Further question is the macro state of the economy depending on a shock to agent p. By

differentiating y one similarly gets

∂y

∂εp
= g′(h(x1) + . . . + h(xn)) ·

n∑
i=1

h′(xi) ·
∂xi
∂εp

,

which after evaluating at ε = 0 and using equation (3) yields

∂y

∂εp

∣∣∣∣
ε=0

= g′(0) · h′(0)

n∑
i=1

α · bi,p. (4)

Note that
∑n

i=1 bi,p is the sum of the pth column of matrix B. The solution of differential equations
(4) gives the linear approximation of the macro state:

y = f ′(0) · g′(0) · h′(0)

n∑
p=1

n∑
i=1

bi,p · εp.

At this point one is able to shed light on the optimality of adjacency eigenvector centrality in the
empirical work of Alter et al. (2015). Letting (A∗ = AT ) and setting f(x) = g(x) = h(x) = x
(meaning α = β = 1), the macro state of the economy is linearly approximated by

y =

n∑
p=1

n∑
i=1

bi,p · εp.

Therefore the marginal effect on the macro state of a small shock to bank p is

∂y

∂εp
=

n∑
i=1

bi,p = (BT · 1)p

Furthermore, if A∗ = AT then B∗ = BT and what one gets is exactly the Bonacich centrality
vector b(α, β) for α = β = 1. Though b(α, β) is not defined for β = 1, a limit of it exists as shown
below with the help of Lemma 2.

Lemma 2. The largest eigenvalue of a stochastic matrix is 1.

For proof, see Appendix A.
This Lemma together with Lemma 1 leads to the fact that

lim
β→1−

(1 − β) · b(1, β) ∝ v,

i.e. for a doubly stochastic matrix eigenvector is indeed a quasi-optimal measure of macro state
(or in the case of capital allocation, aggregate loss) in the presence of small shocks and linear
interaction function. Moreover, there is theoretical evidence (Acemoglu et al., 2015a) that for any
interaction function, an agent with higher Bonacich centrality may propagate negative shocks more
extensively which is closely related to the identification and assessment of systemically important
institutions. This result holds only for the first order approximation.
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If one takes the second order approximation of the macro state (similarly to the first order
Taylor expansion above), another centrality measure can catch the extent of shock propagation
ability, the standard deviation of the pth column of matrix B, which they call concentration
centrality :

conp = stdev(b1,p . . . , bn,p).

Node i is said to be systemically more important than j if y(i) > y(j), where y(i) denotes the
macro state when i is hit with a negative shock. Precisely, in case of concave interaction function,
institution i is systemically more important than j if coni > conj .

4.2 Size-adjusted harmonic distance

In fact, contagion interactions are not linear and a second order approximation may not be eli-
gible (indeed, the special interaction function depicted on Figure 2 cannot be approximated by
a quadratic function). One have to rely on the special interaction function defined in Subsection
3.2. Acemoglu et al. (2015b) deeply analyze stability in financial networks in case of identical
institutions. They show that as long as the size of a negative shock is below a certain threshold,
less fragility is obtained by a more equal distribution of interbank liabilities. This phenomenon
changes if the size of shock is above this threshold. On the contrary, they show that a more equal
distribution may increase the number of defaults. The authors present a new notion of distance
called harmonic distance building on mean hitting time, an existing concept of the theory random
walks on graphs, or more generally Markov chains. Mean hitting time of a random walk on a graph
from vertex i to j is the expected number of steps of a random walk from i until it reaches j. It is
easy to see that the recursive equation (5) for harmonic distance is exactly the same concept for
financial networks. For further knowledge on random walks on graphs or Markov chains, see the
survey of Lovász (1993) or the book of Levin et al. (2009). Note that harmonic distance is not a
distance in a mathematical way because it is not symmetric.

The size-adjusted harmonic distance from bank i to bank j is given by

hi,j = θi +
∑
k ̸=j

(
yi,k
yk

)
· hk,j ,

with the restriction that hi,i = 0, where yi,k is again the liability of i to k, while yi is total
repayments of i, θi is the scaling factor of liabilities and liquid assets such that θi · y = yi. By
choosing y = 1, the definition becomes

hi,j = yi +
∑
k ̸=j

(
yi,k
yk

)
· hk,j , (5)

which representation will suggest an extension of this definition in the next section. The intuitive
meaning of this definition is the following. In case of the default of bank i, losses of yi are generated

to its neighbours. One can think of
(
yi,k
yk

)
as the probability of shock propagation towards node

k, and from k to j the distance is recursively defined.
If I set yi = 1 for all i, harmonic distance becomes exactly the same as the mean hitting time of

a Markov chain. It is shown that if a bank j defaults all other banks also default if and only if their
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harmonic distance from j is smaller than a specific threshold (Proposition 8). The counterpart
of this statement (Proposition 12) is that if yi ̸= 1, all other banks other than j also default if
and only if their harmonic distance from j is smaller than the given threshold. This implies that
banks that are closer in harmonic distance to the defaulted bank are more vulnerable to distress.
Since the original definition is recursive, it is not useful for empirical investigations, the following
proposition gives the explicit formula of harmonic distance of any two banks after the introduction
of some technical notations.

Let Y = {yi,j}ni,j=1 = {yi}ni=1, i.e. the elements of the ith row are the total liabilities of i.

Denote the probability of shock propagation matrix as Q = {qi,k}ni,k=1 =
{

yi,k
yk

}n

i,k=1
. Let M =

−(
∑n

i=1 yi)·
(
I−Q + 1∑n

i=1 yi
·Y
)−1

and the matrix D the columns of which are di =
[
−v0 · mi,i

v0,i

]
,

where v0 is the eigenvector corresponding to eigenvalue 0 of matrix (I−Q). D will be responsible
for the diagonal restriction of harmonic distances.

Proposition 1. The matrix H = {hi,j}ni,j=1 of pairwise size-adjusted harmonic distances is ex-
plicitly given by

H = −

(
n∑

i=1

yi

)
·
(
I−Q +

1∑n
i=1 yi

·Y
)−1

+ D,

if and only if there is no non-borrowing node in the directed network.

For proof, see Appendix A.

5 Extended harmonic distance

This section presents a new extension of the original definition of harmonic distance. Results and
calculations remain very similar. The problem with the original definition is that liquid assets are
scaled with the same scaling factor θi as total liabilities for bank i. Having seen in the definition
of equation (5), it is straightforward to take a further step in the usage of the scaling factor. Thus
I define the extended harmonic distance as

hi,j = ei +
∑
k ̸=j

(
yi,k
yk

)
· hk,j , (6)

with the restriction that hi,i = 0 for all i. Now ei is the liquidity surplus or liquid assets of bank
i. With the help of this definition, the following statement holds the proof of which closely follows
the proof of Proposition 12 in Acemoglu et al. (2015b).

Proposition 2. Suppose that bank j is hit with a negative shock ε >
∑n

i=1 ei. Then

1. bank j defaults

2. all other banks also default if and only if hi,j < yi for all i.
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For proof, see Appendix A.
This proposition very similarly states that if bank j is hit with a large enough shock it im-

mediately defaults. Its default triggers a cascade of defaults to all other banks in the network if
and only if the harmonic distances of the others is below their total liabilities. This version of the
statement is quite clear and intuitive but it still remains an open question what happens when
these specific conditions do not hold exactly.

Note that Proposition 1 remains valid for the calculation of extended harmonic distance by
changing matrix Y with E where the ith row of E is (ei, . . . , ei).

Proposition 3. The matrix H = {hi,j}ni,j=1 of pairwise size-adjusted harmonic distances is ex-
plicitly given by

H = −

(
n∑

i=1

ei

)
·
(
I−Q +

1∑n
i=1 ei

·E
)−1

+ D,

if and only if there is no non-borrowing node in the directed network.

For proof, see Appendix A.
Now one is able to calculate pairwise harmonic distances and is motivated by Proposition 2 to

estimate systemic importance with the help of these distances. Though it is shown in Acemoglu
et al. (2015b) that the sum of harmonic distances from bank i to all other nodes is constant, it
only holds when total repayments are identical. Given this and the fact that banks that are closer
in harmonic distance to the defaulted bank are more vulnerable it is straightforward to calculate∑n

i=1 hi,j as a measure of network systemic importance of bank j which is the sum of the jth
column of matrix H. One could argue that any change in

∑n
i=1 hi,j is only due to the changes

of institution sizes. One can simply check that networks with identical total transaction volumes
produce different harmonic distances, furthermore, when total liabilities of nodes are heterogenized
in the same way but with different transaction structures,

∑n
i=1 hi,j behaves differently again.

One can see from the definition that increasing the size of liabilities leads to an increase in
harmonic distances. However, one can control for this kind of change with the help of Proposition
2. It states that all other banks than j default if and only if hi,j < yi for all i. To get rid of

institution sizes, these conditions can be rearranged to
hi,j

yi
< 1 for all i. This transformation will

also be applied in Subsection 8.3 when I analyze the time evolution of harmonic distances in a real
life financial network.

6 Artificial interbank networks

This section is related to the interbank networks that I will compare systemic importance measures
on. After disclosing some technical difficulties and their solution in Subsection 6.1, I turn to the
generation process of artificial interbank networks in Subsection 6.2. In the lack of empirical
liquidity defaults, I generate artificial payment networks having similar network topology to an
interbank network. I follow the method of Soramäki and Cook (2013). The reason one chooses to
generate large numbers of networks from the same family of graphs is that robustness of results is
guaranteed only in this case, while real life networks change in time. After obtaining a network, I
calculate the payment equilibrium and induce individual defaults in the system.
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6.1 Dealing with weakly connected networks, absorbing and transient nodes

I restrict the analysis to weakly connected networks, where any node can be reached on an undi-
rected path from any node. In the proof of Proposition 1 and 3, I used that the sum of a column of
Q is 1 but it does not hold if there is an absorbing state because the elements of the corresponding
column are 0. This also motivates the analysis of absorbing and transient nodes separately. Two
nodes are strongly connected if they are reachable from one another on a directed path. In the
strongly connected component, any two nodes are strongly connected. In this subsection I assume
that there is only one strongly connected component (SCC). If there exists a node which cannot be
reached from the strongly connected component but can reach the SCC, it is said to be transient.
Nodes that can be reached from the SCC nodes are called absorbing nodes. It is easy to verify that
absorbing nodes cannot reach transient nodes otherwise absorbing nodes would also be strongly
connected. Furthermore, transient nodes may reach absorbing nodes directly. See Figure 3 for
demonstration.

SCC

Transient component
Absorbing component

Proposition 1

Figure 3: A decomposed weakly connected network and the usefulness (dashed blue) of Proposition
1 and 3

From the above considerations, it is clear that

ytransient,SCC = ytransient,absorbing = ySCC,absorbing = 0.

To overcome the usefulness of Proposition 1 and stay between the strongly connectedness assump-
tions of Acemoglu et al., I add virtual payments of 1 unity of money to all possible directed edges,
that is, I add the adjacency matrix of a complete directed network to the original payment net-
work, i.e. y

′
i,j = yi,j + 1 for all i, j. This operation is rather technical because the ratio of virtual

payments to real payments is below 10−9 therefore contagion will not take effect through virtual
edges and strictly viewing equation (5), only the negligible virtual outpayments of absorbing nodes
will have effect on harmonic distances.
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6.2 An extended Barabási – Albert network algorithm

Soramäki and Cook (2013) use an extended version of preferential attachment algorithm by Albert
and Barabási (2002). While the original algorithm attaches new edges to the network undirectedly,
one needs directed edges and edge weights also. Note that the algorithm in Soramäki and Cook
(2013) does not guarantee that newly added nodes are connecting to the existing network and
therefore at termination the number of borrowing or lending banks can be much smaller than the
desired number, n. I modify their algorithm so that it terminates only if I have the satisfactory
number of active nodes in the network. In the following pseudo-code, n is the total desired number
of banks, n0 is the initial number of banks in the network. α is the preferential attachment
parameter which can be interpreted as a kind of gravity parameter: a higher value of α increases
the likelihood of connecting to already existing nodes having more connections. m is the number
of edges attached at an iteration step. hi will be the ”strength” of node i which determines the
probability of being selected as an endpoint of an edge.

In words, the algorithm works as follows. It starts with n0 initial banks in the network, adds
a new node at every iteration step and connects m directed edges by selecting the starting point
(sender) and ending point (receiver) of the directed edge (payment) with probability proportional
to the existing nodes’ relative strength in the network. The algorithm terminates if there are n
active banks in the network sending or receiving payments. It is possible that there will be more
than 1 connected components.

FOR i = 1..n0 (add initial banks/nodes)
SET hi = 1

END FOR

SET active = 0 (initial number of active banks in the network)
SET k = n0 + 1 (first new bank)

WHILE active < n
FOR l = 1..m (average number of payments per bank)

SELECT random sender i ∈ {1, . . . , k} such that bank i has the probability hi∑
l hl

of

SET hi = hi + α (update preferential attachment strength)

SELECT random receiver j ∈ {1, . . . , k} such that bank j has the probability
hj∑
l hl

of being selected as recipient of the payment
SET hj = hj + α (update preferential attachment strength)
SET yj,i = yj,i + 1 (create payment/link)

END FOR

IF k ≤ n SET hk = 1 AND SET k = k + 1 (create new bank/node)
SET active as the number of nodes sending or receiving any payments

END WHILE

Furthermore, I need edge weights, i.e. values of repayments. Following again Soramäki and
Cook (2013), I set values proportionally to the minimum of in-degree and out-degree of an edge and
the number of payments yj,i (which are understood as multiple edges in the network) multiplied
by a random variable drawn from a log-normal distribution:

edgeweight = min(indegree, outdegree) · exp(N(0, 1))
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I also need an operating cash flow for all banks in the network high enough so that there is no
default in the baseline payment equilibrium. The cash flow vector e = c · (y −Q · y), c ≥ 1 is a
suitable choice as the incoming payments Q · y together with liquid assets e will be at least the
amount of outgoing payments y.

6.3 Complete networks

To cross-check with BA network results, I also examined complete networks and set edge weights
in a randomized manner similar to the BA network:

edgeweight = λ · exp(N(0, 1)).

6.4 Payment equilibrium

The payment equilibrium vector is the vector of outgoing payments that satisfies

x∗ = [min{Qx∗ + e,y}]+ ,

where x∗ ∈ H =
∏n

i=1 [0, yi] is the Cartesian product of closed intervals. Defining the mapping
Φ : H → H,

Φ(x∗) = [min{Qx∗ + e,y}]+ ,

where the minimum operation (and also the maximum below) is element-wise in a vector. The
payment equilibrium or clearing vector is x∗ = Φ(x∗) and individual payments are given by
x∗i,j = qi,j · x∗j . This payment equilibrium is exactly the same as in Eisenberg and Noe (2001),
therefore one is able to implement their fictitious default algorithm which is more deeply analyzed
and extended with fire sales in Cecchetti et al. (2016). Following them, there exists a unique
greatest clearing vector x∗, that is, x∗ = Φ(x∗) and if x = Φ(x) then x∗ ≥ x. Let us denote the
default set

D(x) = {i ∈ 1 . . . n : Φ(x)i < yi}

and define the matrix

Λ(x)i,j =

{
1 if i = j and i ∈ D(x)

0, otherwise.

With these notations, further let

Fx′ (x) = Λ(x
′
)(min{y,max{0,Q · (Λ(x

′
)x + (I− Λ(x

′
)) · y) + e}}) + (I− Λ(x

′
)) · y.

One can check that Fx(x) = Φ(x) for all x. The algorithm works as follows. Define the sequence
y0 = y,yj = f(yj−1), where f(yj−1) is a fixed point of Fyj−1(·). This iteration terminates in at
most n iterations and yn becomes the greatest clearing vector x∗ for network (Y, e). At every
iteration step I am looking for the fixed point of Fx

′ (·), say a function f(x
′
) for which Fx

′ (f(x
′
)) =

f(x
′
). The fixed point of Fyj−1(·) is calculated by another iteration: let Y0 = y, Yn = Fyj−1(Yn−1)

for n ≥ 1. {Yn} converges to f(yj−1), the iteration is terminated if ∥Fyj−1(Yn) −Yn∥2 < ε for a
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predefined tolerance level ε. It is clear that if x∗j < yj then bank j is insolvent and one can also
differentiate fundamental and contagious defaults; bank i suffers fundamental default if

n∑
j=1

qi,j · yj + ei − yi < 0

and it suffers contagious default if

n∑
j=1

qi,j · yj + ei − yi ≥ 0,

but
∑n

j=1 qi,j · x∗j + ei − yi < 0.
In our setup, the initial default of a bank i deletes its interbank liabilities (outgoing payments)

from the network, i.e. the ith column is deleted from matrix {yi,j}ni,j=1. To measure the effect of
this default in the network I simulate contagion with the method above and get the equilibrium
payment vector x∗. Thus compared to the original vector of liabilities y, the overall loss induced
in the financial system by the default of bank j is the sum of the elements of y − x∗,

lossesj =
n∑

i=1

(yi − x∗i ).

This amount is our benchmark measure of systemic importance of a bank. The number of defaults
is given by defaults =

∑n
i=1 1 {yi > x∗i }.

7 Application to systemically important institutions

The first straightforward question that comes to one’s mind is that how well harmonic distances and
concentration centrality describe the systemic importance of individual financial institutions. This
question is closely related to the application of centrality measures in the systemic risk literature
and may be interpreted as a cross-section analysis of measures under consideration.

This section summarizes the simulation results on our theoretically established measures com-
pared to some ”off-the-shelf” measures. The analysis was carried out as follows. I generated a
given number of networks with fixed parameters preferential attachment, number of banks, num-
ber of initial banks, number of payments and cash flow parameter. I set the cash flow vector
(liquid assets) so that there is no contagion. After this, I erased outgoing payments for every node
one-by-one and ran the Eisenberg - Noe algorithm and calculated y − x∗ and the above defined
measure losses for every initial default. Then I calculated the importance measures. In case of
BA networks and harmonic distances, I applied the ”trick” of Subsection 6.1, i.e. y

′
i,j = yi,j + 1

for all i, j.

7.1 Results on BA networks

7.1.1 Observed behaviour

Our first remark is that harmonic distances range between extremely large scales compared to
centrality measures and losses also. Furthermore, important nodes have low harmonic distances
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while their centralities are large. Based on these experiences, I set the importance measure to
1∑n

i=1 hi,j
, see Figures 4 and 5.
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Figure 4: The sum of harmonic distances and implied losses of nodes in a BA network with
parameters n = 50, n0 = 5, m = 4, α = 0.1

0.00E+00

1.50E+08

3.00E+08

4.50E+08

6.00E+08

7.50E+08

9.00E+08

0.00E+00

3.00E-11

6.00E-11

9.00E-11

1.20E-10

1.50E-10

1.80E-10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

1 / harmonic distances losses (right axis)

Figure 5: The reciprocal of sum of harmonic distances and implied losses of nodes in a BA network
with parameters n = 50, n0 = 5, m = 4, α = 0.1

In the following, I generated 1000 networks for fixed parameter set (α, n = 50, n0 = 5,m = 4, c),
calculated systemic importance measures and ran the payment equilibrium algorithm to obtain
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losses implied by the failure of any node. Table 1 contains the average correlations of importance
measures with normed losses

losses =

n∑
i=1

(yi − x∗i )

maxi,j yi,j

and the standard deviations of correlations.
One can conclude that though our suggested harmonic distances perform better than the

original harmonic distances, they are still weaker than classical weighted degree and eigenvector
centralities. Both harmonic measures, Bonacich and concentration centrality’s correlation with
losses have really high standard deviation. Except for closeness and betweenness, all measures
performance improve by the increase of preferential attachment parameter α. This is important
in the sense that the structure of network is a key issue in the analysis. One can note that
results do not change significantly along parameter c which may seem surprising: banks with
slightly higher amount of liquid assets have similar loss patterns when an institution fails. As an
additional check, in the following experiments I generated 10 000 BA networks for fixed parameter
set (α, n = 50, n0 = 5,m = 4) while c ∈ (1, 3) was uniformly random for each bank individually.
See results in Table 2. Results are similar to the previous ones.

Rank correlations are available in Appendix B. It is important to note that rank correlations are
not the proper measures to quantify the linear co-movement of variables. Though they are higher
and deviations in case of harmonic distances are significantly lower. These results highlight that
harmonic distances are useful for identifying and ranking systemic institutions, but loss patterns
might differ. Bonacich and concentration centralities are still weaker than extended harmonic
distances.

7.1.2 ”Mean” behaviour

In the previous subsection we have seen that both harmonic distances correlation to losses have high
standard deviation. Now I investigate this behaviour when a large number of network measures
are averaged. This could be interpreted as an expected behaviour of systemic importance measures
where expectation is through random networks. I repeat calculations, but this time all measures
and losses will be averaged along networks for a given parameter set. More formally, if ci,t is

a centrality of bank i in network t, then the average centrality of bank i will be
∑T

t=1
ci,t
T , the

method is the same for implied losses. The averaging method can be used if one would like to
take a usual interbank network when imposing a capital buffer for mitigating contagion risks.
This is the method that the MNB (the central bank of Hungary) applies to analyze the systemic
importance of financial institutions in interbank networks. Weekly network measures are averaged
in a yearly time horizon to indentify important participators in interbank markets.

The results in Table 3 show that harmonic distances become an appropriate measure of systemic
importance along with weighted degree, eigenvector, Bonacich and concentration centrality, though
for higher preferential attachment parameters the performance of harmonic distances decreases.

7.2 Results on complete networks

As importance measures are defined not specially for BA networks, it is reasonable to compare
them on other network structures. To cross-check the results on BA networks I ran the algorithm
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harmonic distances:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.406 0.215 0.423 0.219 0.410 0.215
0.2 0.524 0.229 0.529 0.226 0.531 0.236
0.4 0.665 0.223 0.675 0.223 0.669 0.236
0.6 0.703 0.215 0.721 0.220 0.733 0.227

extended harmonic distances:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.443 0.229 0.460 0.236 0.443 0.227
0.2 0.579 0.247 0.587 0.242 0.587 0.252
0.4 0.733 0.224 0.738 0.226 0.732 0.239
0.6 0.773 0.207 0.778 0.215 0.794 0.217

weighted degree:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.783 0.063 0.793 0.070 0.796 0.067
0.2 0.805 0.071 0.816 0.073 0.817 0.072
0.4 0.839 0.076 0.848 0.077 0.846 0.082
0.6 0.849 0.079 0.861 0.080 0.866 0.080

eigenvector:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.746 0.078 0.757 0.078 0.757 0.078
0.2 0.782 0.076 0.792 0.079 0.792 0.079
0.4 0.821 0.080 0.830 0.079 0.831 0.084
0.6 0.836 0.084 0.843 0.086 0.849 0.083

Bonacich:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.397 0.188 0.380 0.187 0.375 0.187
0.2 0.466 0.212 0.450 0.192 0.451 0.198
0.4 0.538 0.219 0.511 0.208 0.505 0.214
0.6 0.505 0.214 0.509 0.225 0.503 0.221

concentration:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.386 0.193 0.369 0.193 0.364 0.192
0.2 0.456 0.216 0.441 0.198 0.441 0.201
0.4 0.527 0.222 0.502 0.211 0.490 0.219
0.6 0.490 0.219 0.493 0.225 0.489 0.220

...
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closeness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.431 0.095 0.422 0.096 0.425 0.092
0.2 0.403 0.100 0.402 0.101 0.401 0.102
0.4 0.364 0.117 0.355 0.119 0.355 0.120
0.6 0.316 0.128 0.314 0.130 0.315 0.128

betweenness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.373 0.168 0.369 0.162 0.367 0.162
0.2 0.345 0.168 0.357 0.173 0.356 0.177
0.4 0.300 0.182 0.289 0.183 0.292 0.189
0.6 0.230 0.188 0.232 0.191 0.234 0.188

Table 1: Average correlation of centrality measures and losses generated by the failure of single
nodes and standard deviation of correlations.

harmonic distances
α avg.corr. std.dev.

0.1 0.416 0.217
0.2 0.540 0.234
0.4 0.666 0.232
0.6 0.722 0.223

extended harmonic distances
α avg.corr. std.dev.

0.1 0.450 0.231
0.2 0.591 0.248
0.4 0.724 0.235
0.6 0.778 0.219

weighted degree
α avg.corr. std.dev.

0.1 0.794 0.071
0.2 0.819 0.075
0.4 0.847 0.079
0.6 0.864 0.080

eigenvector
α avg.corr. std.dev.

0.1 0.759 0.078
0.2 0.796 0.078
0.4 0.828 0.082
0.6 0.846 0.083

Bonacich
α avg.corr. std.dev.

0.1 0.377 0.185
0.2 0.455 0.197
0.4 0.502 0.214
0.6 0.508 0.229

concentration
α avg.corr. std.dev.

0.1 0.365 0.190
0.2 0.444 0.202
0.4 0.491 0.217
0.6 0.494 0.229

closeness
α avg.corr. std.dev.

0.1 0.427 0.094
0.2 0.402 0.100
0.4 0.356 0.117
0.6 0.313 0.127

betweenness
α avg.corr. std.dev.

0.1 0.433 0.164
0.2 0.428 0.181
0.4 0.293 0.185
0.6 0.303 0.195

Table 2: Average correlation of centrality measures compared to losses generated by the failure of
single nodes, randomized liquid assets.
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harmonic distances
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.994 0.991
0.2 0.985 0.979 0.987
0.4 0.947 0.915 0.947
0.6 0.880 0.839 0.900

extended harmonic distances
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.995 0.991
0.2 0.986 0.980 0.988
0.4 0.950 0.916 0.949
0.6 0.877 0.811 0.881

weighted degree
c 1 2 3

α corr. corr. corr.

0.1 0.998 0.999 0.998
0.2 0.999 0.999 1.000
0.4 0.999 0.999 0.998
0.6 0.996 0.997 0.995

eigenvector
c 1 2 3

α corr. corr. corr.

0.1 0.995 0.996 0.996
0.2 0.999 0.998 0.999
0.4 0.999 0.998 0.999
0.6 0.997 0.997 0.997

Bonacich
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.993 0.992
0.2 0.996 0.993 0.995
0.4 0.997 0.996 0.995
0.6 0.992 0.995 0.994

concentration
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.993 0.992
0.2 0.996 0.993 0.995
0.4 0.997 0.996 0.995
0.6 0.992 0.995 0.994

closeness
c 1 2 3

α corr. corr. corr.

0.1 0.864 0.847 0.853
0.2 0.800 0.798 0.793
0.4 0.719 0.710 0.714
0.6 0.651 0.635 0.662

betweenness
c 1 2 3

α corr. corr. corr.

0.1 0.841 0.819 0.817
0.2 0.726 0.726 0.724
0.4 0.603 0.586 0.600
0.6 0.511 0.477 0.512

Table 3: Correlation of averaged network measures and average induced losses.
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on 1000 complete networks for fixed parameter c generated according to 6.3, see results in Table
4. Note that betweenness in a complete network is 0 by definition and closeness is also constant,
therefore the correlations are not interpretable. The main finding is that harmonic distances behave
very differently compared to real losses, though extended harmonic distances still perform slightly
better than harmonic distances. Bonacich and concentration centralities perform even worse. I
also note that for complete networks the reciprocal transformation did not result any significant
change in correlations.

These results are even more surprising concerning that also weighted degree and eigenvector
centrality become much worse. It also confirms that centrality performances are highly dependent
on the network structure itself therefore calculating the real payment equilibrium is always useful
and recommended and centrality measures are to be used for supplementary analysis.

c
1 2 3

avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.
harmonic distances 0.067 0.151 0.024 0.148 0.020 0.141
extended harmonic distances 0.168 0.154 0.136 0.153 0.129 0.146
weighted degree 0.654 0.087 0.680 0.076 0.677 0.077
eigenvector 0.642 0.095 0.672 0.076 0.669 0.075
Bonacich 0.040 0.151 0.002 0.147 -0.001 0.142
concentration -0.053 0.143 0.029 0.143 -0.029 0.150
closeness 0 0 0 0 0 0
betweenness N/A N/A N/A N/A N/A N/A

Table 4: Correlations for complete networks.

8 Application as a financial stress indicator

In the previous section I analyzed harmonic distances and centrality measures in cross-section
without time-evolution. Now I turn to a real-life financial network, the unsecured interbank lending
of Hungarian financial institutions to see how these measures behave in time. It turns out to be
interesting to look at these measures aggregated as an indicator of the state of the interbank
market.

Hungarian financial institutions including banks, saving cooperatives, building societies and
financial undertakings have to report their unsecured interbank lending and deposit transactions to
the MNB thus the time evolution of the whole network is known. Data starts on 2 January 2008 and
lasts until 31 December 2015. Banks with several subsidiaries are handled as consolidated banking
groups. A daily network of transactions is usually sparse but one is able to calculate centrality
measures on connected networks. To obtain at least a weakly connected network, I aggregated
daily networks in 5-day, non-overlapping windows. This aggregation resulted networks in which
the size of the largest weakly connected component is almost always equal to the number of active
banks in the corresponding 5-day period. Therefore, a network contains the weekly transactions
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of financial institutions. Figure 6 shows the number of financial institutions and their total value
of transactions in every week in the given time period.
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Figure 6: Number of banks and transaction volume in weekly networks

8.1 Scale-free property

As a first side-result, one has to check whether the Hungarian interbank lending network is a
scale-free network which is a missing result from previous papers on Hungarian data. This fact,
on the other hand justifies the transformation 1∑n

i=1 hi,j
also for Hungarian data that was applied

in Subsection 7.1. For this, one has to empirically check that the degree distribution follows a
power law distribution: P(k) ∼ k−γ for some γ typically lying between 2 and 3. Figure 7 shows
the degree distribution for the 405 weekly networks. Colours change across 405 weeks as indicated
on the colour bar.

I fit power-law distributions with the MATLAB codes of Clauset et al. (2009). The code esti-
mates parameters with maximum likelihood method and tests the null-hypothesis of being drawn
from a power-law distribution with a Kolmogorov – Smirnov test. I accept a network to be power-
law distributed with p-value greater than 0.1 as in Clauset et al. (2009). This is approximately
80% of our sample, 78 networks failed the test out of 405 networks. Table 5 shows the numbers of
networks and the average, minimum, maximum p-value and γ parameters of degree distributions.
Rejected networks are distributed roughly uniformly in the time series.

Summarizing this subsection, I showed that most of the Hungarian interbank networks in the
time series from 2008 to 2015 are scale-free. For similar results on the Austrian interbank network,
see Boss et al. (2004). For a statistical test based approach on US payment flows, see Soramäki
et al. (2007).
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Figure 7: Degree distribution of the Hungarian interbank lending network between 2008 and 2015

p-value γ
no. of networks min max avg min max avg

scale-free 327 0.100 0.993 0.477 1.886 3.344 2.906
non-scale-free 78 0.000 0.098 0.038 1.499 3.321 2.117

Table 5: Accepted (scale-free) and rejected (non-scale-free) networks’ p-values and γ parameters
of degree distributions
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8.2 Cross-section analysis

Similarly to Subsection 7.1. and 7.2, I calculate correlations along institutions for every week
between 2008 and 2015. In contrast with our simulated scale-free networks where out-degree is
very close to in-degree because of symmetric edge attachment, weighted degree is substituted with
weighted out-degree as an ex-ante failure of an institution causes contagion if only if it is intended
to pay back its interbank loans. In this analysis, I accept the fact from Subsection 7.1 that weighted
degree fits best to generated loss patterns. I do not drop rejected (non-scale-free) networks from our
sample because correlations do not improve significantly. Thus, one can think of rejected networks
as nearly scale-free and apply the reciprocal transformation of harmonic distances. Correlations
on Figure 7 confirms our results in Subsection 7.1. Weighted degrees and eigenvector centralities
are highly correlated, the correlation of transformed harmonic distances to eigenvector centrality
is close to 0.5 but extremely volatile with standard deviation around 0.2 as can be seen on Figure
8. Table 6 shows average correlations and standard deviations of correlations. I also present the
correlations on the average network in Table 7 which reflects to Subsection 7.1.2 and the results
are similar to that subsection. Therefore I conclude that in case of averaging networks or measures
in time aggregated harmonic distances become good measures of systemic importance. This is an
important result from a practitioner’s point of view since as mentioned earlier, at the MNB we
identify systemic importance of banks in the financial network by averaging in time.
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Figure 8: Evolution of correlations across institutions of weighted degrees (WD), eigenvector cen-
tralities (Eig), the reciprocal of harmonic distances (1/HD), Bonacich centralities (B) and concen-
tration centralities (C)

8.3 Evolution in time

To be able to capture changes also in transaction volumes and see the variation of risk in time,
I use un-normalized centrality measures along the time horizon: weighted out-degree is replaced
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avg. std.dev.
Corr (WD,Eig) 0.704 0.076
Corr (1/HD,WD) 0.079 0.187
Corr (1/HD,Eig) 0.488 0.197
Corr (B,WD) -0.041 0.142
Corr (B,Eig) 0.361 0.196
Corr (C,WD) 0.019 0.208
Corr (C,Eig) 0.189 0.217

Table 6: Average correlations and standard deviations across institutions.

Corr (WD,Eig) 0.881
Corr (1/HD,WD) 0.847
Corr (1/HD,Eig) 0.937
Corr (B,WD) 0.790
Corr (B,Eig) 0.922
Corr (C,WD) 0.259
Corr (C,Eig) 0.177

Table 7: Correlations on the averaged network.

with total liabilities. Figure 9 shows the sum of liabilities and harmonic distances of an O-SII
in Hungary. Similar graphs for two further systemically important institutions are available in
Appendix B.

Harmonic distance obtains its peak value during the global financial crisis, while afterwards its
volatility becomes lower. This result is similar to other institutions, thus it is promising to define
a financial network stability index as

I(t) =
n∑

j=1

1∑n
i=1 hi,j(t)

.

The behaviour of this index can be seen on Figure 10 together with interbank transaction volume
(i.e, the sum of all liabilities) and the sum of previous other measures. One can see on Figure
6 that neither the number of banks in the network, nor the above mentioned measures showed
as spectacularly the volatility change around the financial crisis. Harmonic distances seem to
catch the systemic instability around a systemic distress situation or the role of an institution
in systemic instability. Although one could argue that if harmonic distances performed worse
than other measures in the cross-section analysis, why one should apply the aggregation to make
implications about the state of systemic stability in the network.

A critique of I(t) might be that a decrease in transaction volumes leads to an increase in
transformed harmonic distances. This may lead to the behaviour of harmonic distances during
the crisis. Though one can also interpret it as a good result as the drying up of a market is a
good indication of a stress situation, to control for the changes in transactions, I define a modified
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Figure 9: Time evolution of interbank liabilities and harmonic distances of Bank 1 (O-SII) in
Hungary
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Figure 10: Centrality measures and the sum of all harmonic distances I(t) in the network
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version of I(t) inspired by the statement of Proposition 2. Since all banks default if and only if

hi,j < yi for all i, it may be reasonable to rearrange these inequalities to
hi,j

yi
< 1 for all i. One can

see that the left side of this inequality is independent of size as it is compared to a constant 1 in
the statement. Let the modified version

Î(t) =

n∑
j=1

1∑n
i=1

hi,j(t)

yi(t)

.

On Figure 11, one can see that when I(t) obtained its peak, the modified version Î(t) also
significantly increased and its volatility also became higher. Nevertheless, it is easy to see that
higher transaction volumes make the original index I(t) smoother.
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Figure 11: The graph of I(t) and its modification Î(t)

8.4 Performances in a factor model

The idea of using network measures to identify systemic stress can be achieved by including them
in a systemic stress index (Ha laj and Kok, 2013). The quantification of their usefulness is possible
if we apply a factor model approach. Factor modelling is a dimension reduction tool which creates
common components from a dataset by linear operations. If a few number of factors explain
the variance of a large data set and explained variance is high enough, the role of variables can
be identified in each factor. In this subsection, I quantify the performance of different network
measures in a static factor model approach. I use the dataset and preliminary methodology of
Szendrei and Varga (2017). They rethink the model of Holló et al. (2012) in a statistically rigorous
way by using a dynamic factor model to create an index of financial systemic stress. Usually,
the creation of a sophisticated factor model starts with the simple static factor model. There are
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five sets of variables: government bond market, interbank market, banking sector, FX market and
capital market. The exact names of the variables in these sets are indicated in Table 8.

These variables form the vector yt at time t, and the standard static factor model is given by

yt = λ · ft + ϵt,

where the information in yt is compressed into the factors ft, yt is n-dimensional, ft is q-
dimensional and q < n. Factors and data are normally distributed, i.e. ft ∼ N(0, Iq), ϵt ∼ N(0,Σ)
are iid, λ is a n× q matrix of factor loadings. In this example, the number of variables is n = 19
and the number of factors is q = 4. The variance is then given by

Var (yt) = λ · λT + Σ.

Szendrei and Varga (2017) identify four intuitive factors that drive the variance of the dataset.
Since the variance-covariance matrix of ft is assumed to be diagonal, the factors are orthogonal
to each other in the preliminary, static factor model. It turns out that the inclusion of a network
measure makes the fourth factor much better interpretable. The corresponding factor seems to
be dominated by the largest Hungarian bank’s PD in the banking sector variable set. One can
see that network measures play an important role in the third and fourth factor and harmonic
distances have a quite high coefficient of 0.3185 in the fourth factor. Furthermore, explained
variance increases by approximately 2.7% by including network measures. The exact loading
matrices are available in Table 9. Regarding the explained variance, models that include harmonic
distances, concentration and Bonacich centralities, betweennesses, closenesses and degrees explain
84.3 percent, 83.4 percent, 84.3 percent, 82.9 percent, 84.7 percent and 84.6 respectively. Note that
all measures have been transformed by the reciprocal transformation in order to obtain similar
functional shapes.

One can conclude that the inclusion of network measures into a systemic stress indicator is
reasonable and improves the explained variance of the information in the dataset.

government bond market
bond yields (3-month and 10-year)

CDS (5-year bond)

interbank market
BUBOR (3-month)

HUFONIA overnight rate
HUFONIA trading volume

banking sector
bank PDs: from market price (Merton model)

network measure

FX market
bid-ask spreads: HUF/EUR + HUF/USD

volatilities: HUF/EUR, HUF/USD, HUF/GBP, HUF/CHF

capital market
CMAX: BUX, BUMIX, CETOP20, DAX

implied volatility: VDAX

Table 8: Variables in the factor model (Szendrei and Varga, 2017).
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F1 F2 F3 F4 F1 F2 F3 F4

Benchmark yield 3m 0,2852 0,0369 0,2248 0,0081 Benchmark yield 3m 0,2853 0,0441 0,2150 0,1441

Benchmark yield 10y 0,2228 0,0872 0,1886 0,0659 Benchmark yield 10y 0,2216 0,0963 0,1499 0,3015

CDS HUN-GER spread 0,2126 -0,3522 -0,2758 -0,0684 CDS HUN-GER spread 0,2104 -0,3807 -0,2314 -0,0644

BUBOR 3m 0,1661 -0,2024 0,3426 0,3867 BUBOR 3m 0,1695 -0,0753 0,3643 -0,2073

HUFONIA rate 0,2818 -0,0448 0,1635 0,0085 HUFONIA rate 0,2804 -0,0411 0,1521 0,1738

HUFONIA vol 0,2219 0,2428 -0,3142 0,1235 HUFONIA vol 0,2227 0,2236 -0,3437 -0,0149

PD Bank1 0,2266 0,3064 -0,2133 0,1385 PD Bank1 0,2283 0,2939 -0,2465 0,0123

PD Bank2/Rest 0,1845 0,3523 -0,2394 0,1004 PD Bank2/Rest 0,1864 0,3400 -0,2753 -0,0678

Harmonic distances 0,2692 -0,0794 0,1260 -0,3877 Concentration 0,2708 -0,0884 0,1744 -0,3449

bidask spot 0,1942 -0,3607 -0,2985 -0,0022 bidask spot 0,1917 -0,3884 -0,2592 -0,0074

Vol EURO 0,2103 -0,3560 -0,2758 -0,0491 Vol EURO 0,2079 -0,3836 -0,2341 -0,0459

Vol USD -0,1444 0,2339 -0,1786 -0,4073 Vol USD -0,1393 0,2149 -0,1404 -0,3871

Vol GBP 0,2572 0,1046 0,2122 0,1018 Vol GBP 0,2563 0,1170 0,1759 0,2108

Vol CHF 0,2880 -0,0050 0,2049 0,0245 Vol CHF 0,2876 0,0014 0,1962 0,1551

BUX CMAX 0,2497 -0,2901 -0,1034 -0,1851 BUX CMAX 0,2481 -0,3089 -0,0596 -0,1803

BUMIX CMAX 0,2514 0,2614 -0,0228 0,0996 BUMIX CMAX 0,2519 0,2607 -0,0640 0,0828

CETOP CMAX 0,2390 0,0682 0,0341 0,0818 CETOP CMAX 0,2394 0,0659 0,0246 0,1233

DAX CMAX 0,1565 0,1396 0,2957 -0,6378 DAX CMAX 0,1619 0,1387 0,3557 -0,6008

VDAX 0,2252 0,2041 -0,3039 -0,0975 VDAX 0,2275 0,1785 -0,3016 -0,2260

Explained variance 0,5247 0,1611 0,1050 0,0521 Explained variance 0,5253 0,1569 0,1055 0,0465

F1 F2 F3 F4 F1 F2 F3 F4

Benchmark yield 3m 0,2859 0,0475 0,1988 0,1251 Benchmark yield 3m 0,2850 0,0453 0,2282 0,1433

Benchmark yield 10y 0,2226 0,0958 0,1381 0,2447 Benchmark yield 10y 0,2219 0,0979 0,1710 0,3034

CDS HUN-GER spread 0,2070 -0,3917 -0,2107 -0,0672 CDS HUN-GER spread 0,2129 -0,3778 -0,2326 -0,0551

BUBOR 3m 0,1878 -0,0054 0,4273 -0,0495 BUBOR 3m 0,1494 -0,1189 0,2848 -0,4168

HUFONIA rate 0,2805 -0,0410 0,1429 0,1421 HUFONIA rate 0,2804 -0,0379 0,1627 0,1925

HUFONIA vol 0,2203 0,2095 -0,3537 0,0119 HUFONIA vol 0,2243 0,2261 -0,3511 -0,0125

PD Bank1 0,2266 0,2837 -0,2640 0,0461 PD Bank1 0,2296 0,2946 -0,2485 -0,0128

PD Bank2/Rest 0,1856 0,3295 -0,2844 -0,0384 PD Bank2/Rest 0,1880 0,3395 -0,2755 -0,0988

Bonacich 0,2704 -0,0856 0,1609 -0,3739 Betweenness 0,2710 -0,0877 0,1860 -0,2856

bidask spot 0,1882 -0,4000 -0,2357 -0,0025 bidask spot 0,1941 -0,3853 -0,2635 -0,0093

Vol EURO 0,2046 -0,3948 -0,2118 -0,0482 Vol EURO 0,2103 -0,3806 -0,2361 -0,0373

Vol USD -0,1398 0,2125 -0,1547 -0,4094 Vol USD -0,1384 0,2105 -0,1321 -0,4066

Vol GBP 0,2572 0,1188 0,1598 0,1943 Vol GBP 0,2560 0,1186 0,1887 0,2034

Vol CHF 0,2879 0,0041 0,1824 0,1372 Vol CHF 0,2874 0,0029 0,2078 0,1558

BUX CMAX 0,2459 -0,3143 -0,0503 -0,1940 BUX CMAX 0,2498 -0,3066 -0,0559 -0,1452

BUMIX CMAX 0,2522 0,2552 -0,0746 0,0823 BUMIX CMAX 0,2527 0,2613 -0,0556 0,0624

CETOP CMAX 0,2389 0,0640 0,0139 0,1384 CETOP CMAX 0,2398 0,0669 0,0305 0,0902

DAX CMAX 0,1634 0,1499 0,3238 -0,6458 DAX CMAX 0,1609 0,1357 0,3752 -0,5242

VDAX 0,2253 0,1660 -0,3101 -0,2160 VDAX 0,2293 0,1797 -0,3036 -0,2039

Explained variance 0,5287 0,1562 0,1129 0,0456 Explained variance 0,5221 0,1579 0,1003 0,0488

F1 F2 F3 F4 F1 F2 F3 F4

Benchmark yield 3m 0,2870 0,0589 0,1868 0,0810 Benchmark yield 3m 0,2866 0,0569 0,1873 0,0801

Benchmark yield 10y 0,2245 0,1020 0,1305 0,1721 Benchmark yield 10y 0,2243 0,1010 0,1334 0,1719

CDS HUN-GER spread 0,2052 -0,4104 -0,1641 -0,0502 CDS HUN-GER spread 0,2050 -0,4085 -0,1720 -0,0512

BUBOR 3m 0,1732 0,1009 0,4598 0,0978 BUBOR 3m 0,1790 0,0885 0,4523 0,0995

HUFONIA rate 0,2821 -0,0328 0,1530 0,0959 HUFONIA rate 0,2818 -0,0343 0,1526 0,0953

HUFONIA vol 0,2219 0,1749 -0,3633 0,0515 HUFONIA vol 0,2217 0,1797 -0,3612 0,0522

PD Bank1 0,2280 0,2551 -0,2921 0,0753 PD Bank1 0,2278 0,2591 -0,2883 0,0760

PD Bank2/Rest 0,1870 0,3003 -0,3179 0,0063 PD Bank2/Rest 0,1866 0,3041 -0,3165 0,0051

Closeness 0,2704 -0,0772 0,1545 -0,3933 Degrees 0,2701 -0,0789 0,1533 -0,3934

bidask spot 0,1864 -0,4199 -0,1850 0,0197 bidask spot 0,1862 -0,4178 -0,1932 0,0187

Vol EURO 0,2029 -0,4131 -0,1629 -0,0297 Vol EURO 0,2028 -0,4112 -0,1706 -0,0305

Vol USD -0,1407 0,1958 -0,1989 -0,4329 Vol USD -0,1407 0,1983 -0,1967 -0,4343

Vol GBP 0,2592 0,1276 0,1486 0,1552 Vol GBP 0,2589 0,1262 0,1515 0,1553

Vol CHF 0,2888 0,0145 0,1760 0,0947 Vol CHF 0,2885 0,0127 0,1768 0,0944

BUX CMAX 0,2447 -0,3208 -0,0192 -0,1894 BUX CMAX 0,2445 -0,3205 -0,0241 -0,1895

BUMIX CMAX 0,2542 0,2435 -0,0989 0,0841 BUMIX CMAX 0,2538 0,2447 -0,0974 0,0827

CETOP CMAX 0,2402 0,0617 0,0109 0,1327 CETOP CMAX 0,2400 0,0619 0,0126 0,1333

DAX CMAX 0,1634 0,1699 0,2708 -0,6819 DAX CMAX 0,1633 0,1672 0,2759 -0,6807

VDAX 0,2260 0,1341 -0,3272 -0,1797 VDAX 0,2257 0,1383 -0,3268 -0,1798

Explained variance 0,5259 0,1572 0,1180 0,0460 Explained variance 0,5270 0,1570 0,1169 0,0460

banking 

sector

FX market

capital 

market

interbank 

market

banking 

sector

FX market

capital 

market

government 

bond market

interbank 

market

government 

bond market

interbank 

market

banking 

sector

FX market

capital 

market

government 

bond market

Table 9: Loading matrices and explained variances of the preliminary, static factor model (Szendrei
and Varga, 2017) with different network measures included.
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9 An explanation of results

We saw in Subsection 7.1 that the best fitting measure is weighted degree. That is the consequence
of the fact that first order losses (i.e. the sum of interbank liabilities which is equivalent to weighted
degree) largely dominate higher order losses and higher order losses only add a shift to first order
losses. Figure 12 shows the amount of first order and higher order losses as an output of the
Eisenberg – Noe algorithm in a typical scale-free network. In complete networks, higher order
losses are larger which explains lower correlations in Subsection 7.2. One can conclude that we are
still not able to approximate higher order losses without the iterative algorithm of Eisenberg and
Noe.
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Figure 12: First order and higher order losses induced by the initial default of banks

Arriving to the not so attractive results of harmonic distances, this behaviour may be the
consequence of the weakness of Proposition 2 and its pair Proposition 12 in Acemoglu et al.
(2015b). These statements linearize the non-linear problem

x∗ = [min{Qx∗ + e,y}]+

by requiring all banks in the network to default if a single bank initially fails. In real life it is not
realistic that all other institutions fail even if the initial default is of a dominant systemic bank.
The default of all nodes in the presence of a large shock could be possible in case of a complete
network because of dense interconnections as theoretically stated in Acemoglu et al. (2015b). In
Subsection 7.2, I analyzed contagion in complete networks and did not experience the default of
all banks in case of simulated networks. Results for Bonacich and concentration centralities might
be explained by the Taylor series expansion method, a series expansion around 0 (Acemoglu et al.,
2015a) might be inappropriate for our aims.

Another observation was the behaviour of these measures in time using the daily data of lending
and deposit transactions of Hungarian financial institutions. Correlations were found to be similar
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to the case of simulated networks. The transformation of harmonic distances peaked around the
crisis. As it was mentioned in Section 5, this is partly a consequence of the decline of transaction
volumes.

10 Conclusion

The main goal of this paper was to provide the first numerical results on harmonic distances by
the extension of the model of Acemoglu et al. (2015b), also analyzing the concentration centrality
of Acemoglu et al. (2015a). The first set of results are based on simulated interbank networks,
while the second set of results shows the behaviour in a real financial network. I gave the explicit
formula for the calculation of harmonic distances and extended the results for any size of liquid
assets. To perform the analysis, I generated large numbers of Barabási – Albert type and complete
networks and induced institutional failures by the deletion of their outgoing payments. The results
showed that traditionally used network measures like weighted degree and eigenvector centrality
can catch the importance of individual nodes as default-implied losses of a node correlates highly
with these measures. Despite the theoretical grounding, harmonic distances, Bonacich and con-
centration centralities could not outperform the previously mentioned ”off-the-shelf” measures but
the application of averaging methods resulted in the similar performance of the above as well. I
note that the extended version of harmonic distance performed better than the original one. In
case of complete networks even the previously good measures became much poorer. This fact
underpins that one has to strictly investigate the application purpose of centrality measures.

I repeated the analysis for averaged Barabási – Albert type networks. This method showed very
good results for harmonic distances, Bonacich and concentration centralities as well. One could
conclude (carefully interpreting this result) that the pattern of expected losses (where expectation
is along networks) is very well described by the two main traditional measures and the two harmonic
distances. I can conclude that for specific policy applications all these measures are suitable when
we examine time-averaged real life networks or time averages of centrality measures.

For empirical results, I also calculated network measures for the time series of Hungarian in-
terbank lending networks. After showing that most of these networks are scale-free, I calculated
correlations between the measures and found a similar phenomenon as in case of simulated net-
works, for observed and ”mean” behaviour as well. One finding was that the behaviour of harmonic
distances is very stable in ”normal times” and it peaks around the financial crisis. This makes
it a possible indicator of financial network stress besides other measures as a factor model ap-
proach shows it on Hungarian data (Szendrei and Varga, 2017). This phenomenon is partly due
to the sharp drop in total transaction volumes. A modified measure behaves similarly with higher
volatility.

This work pointed out that the behaviour of financial networks in a contagion situation is
extremely complicated and hard to approximate despite the large amount of research carried out
in recent years. The structure of the underlying network is a key component of the solution
when one applies different importance measures. I found that the information in a single random
or real network cannot be compressed into a centrality measure when the area of analysis is
direct contagion. When looking at an average network along a time horizon, the compression of
information becomes very good. The decrease of volatility is related to the law of large numbers.
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A Theory and proofs

A matrix A with non-negative elements is called irreducible if for any i, j there is a k such that
Ak

i,j > 0.

Theorem (Perron – Frobenius). Let A be an irreducible square matrix. Then

1. A has a positive real eigenvalue λmax such that all other eigenvalues satisfy |λ| ≤ λmax.

2. λmax has multiplicity 1 and has an eigenvector v > 0.

3. Any positive eigenvector is a multiple of v.

4. If w ≥ 0, w ̸= 0 and µ is a number such that Aw ≤ µw, then w > 0 and µ ≥ λmax.
µ = λmax if and only if w is a multiple of v.

Proof of Lemma 1 (Bonacich and Lloyd (2001)). For the sake of generality, I do not assume that
A is symmetric. Let V be the matrix of eigenvectors vi of A. Then AV = Vλ and Ak = VλkV −1.
Let wi be the ith row of V−1. Then Ak =

∑n
i=1 λ

k
i · vi · wi. Therefore Bonacich centrality for

α = 1 becomes

b = (I− βA)−1 · 1 =

( ∞∑
k=0

βkAk

)
· 1 =

( ∞∑
k=0

βk
n∑

i=1

λk
i · vi ·wi

)
· 1

=

(
n∑

i=1

∞∑
k=0

βkλk
i · vi ·wi

)
· 1 =

n∑
i=1

wi · vi

1 − βλi
· 1,

thus using the fact that λ1 is the largest eigenvalue of A, it is easy to see that the second term
disappears in limit, limβ→1/λ1− b(1, β) · (1 − βλ1) = (w1 · 1)v1, what one needed to show.

Proof of Lemma 2. First, I show that 1 is an eigenvalue of a stochastic matrix denoted by W.
The rows of W sum up to 1, therefore W · 1 = 1 · 1, 1 is indeed an eigenvalue. Secondly, I show
that there is no larger eigenvalue than 1. Suppose that W · x = λx for a λ > 1. Then W · x
is a vector with elements smaller than the largest element of x. On the other hand, at least one
element of λx is greater than the largest element of x. This is a contradiction.

Proof of Proposition 1. Let us first rewrite equation (5) in matrix form. Let Y be the matrix
of total repayments, where the ith row is (yi, . . . , yi). Then equation (5) turns into

(I−Q) ·H = Y −

(
n∑

i=1

yi

)
· I. (7)

1st case: If (I − Q) is not invertible (or equivalently, 0 is an eigenvalue of (I − Q)), one cannot

simply obtain H. I show that M = − (
∑n

i=1 yi) ·
(
I−Q + 1∑n

i=1 yi
·Y
)−1

solves equation (7).
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(I−Q) ·M = −(I−Q) ·

(
n∑

i=1

yi

)
·
(
I−Q +

1∑n
i=1 yi

·Y
)−1

= −
(
I−Q +

1∑n
i=1 yi

·Y − 1∑n
i=1 yi

·Y
)
·

(
n∑

i=1

yi

)
·
(
I−Q +

1∑n
i=1 yi

·Y
)−1

= −

(
n∑

i=1

yi

)
· I + Y ·

(
I−Q +

1∑n
i=1 yi

·Y
)−1

.

It remained to check that Y ·
(
I−Q + 1∑n

i=1 yi
·Y
)−1

= Y, which is equivalent with

Y = Y ·
(
I−Q + 1∑n

i=1 yi
·Y
)

. After noticing that Y · (I − Q) = 0, it is enough to verify that

Y · 1∑n
i=1 yi

·Y = 1∑n
i=1 yi

·Y ·
∑n

i=1 yi = Y.

M satisfies equation (7), but there is one more restriction; the diagonals have to be zero
according to the definition. This can be reached by adding a matrix D to M for which (I−Q)·D = 0
and di,i = −mi,i.

According to that every column of D is an eigenvector of (I−Q) corresponding to 0 eigenvalue
(let it be v0). This eigenvector multiplied by a scalar is still an eigenvector since (I−Q) · λv0 =
λ (I−Q)v0 = λ · 0 · v0 = 0. Thus for the ith column of D, let di = −v0 · mi,i

v0,i
, then (I−Q) ·di =

−mi,i

v0,i
(I−Q) ·v0 = 0 and di,i = −mi,i. H = M+D solves equation (7) with the restriction on the

diagonals.
2nd case: If (I−Q) is invertible then 0 is not an eigenvalue of (I−Q). Simply M = (I−Q)−1 ·

(Y−(
∑n

i=1 yi)·I). For the diagonal restriction one again needs a matrix D for which (I−Q)·di = 0
for all i. This would mean that all columns of D are eigenvectors corresponding to 0 eigenvalue.
This is a contradiction.

In fact, the assumption that there is no non-borrowing node in the network is equivalent with
the invertibility of (I−Q): if there is no non-borrowing node then the sum of all columns is 0 in
(I−Q), (I−Q)T · 1 = 0, 0 is an eigenvalue of (I−Q)T .

Proof of Proposition 2. 1. Suppose ε >
∑n

i=1 ei but no bank defaults. Then from the defi-
nition of payment equilibrium, ∑

k ̸=i

xi,k + ei ≥
∑
k ̸=i

xk,i

for all banks i. Summing over all i and using that j is shocked with ε,∑
i

∑
k ̸=i

xi,k + ei ≥
∑
i

∑
k ̸=i

xk,i,

and by the fact that the sums on the two sides are equal,
∑

i ̸=j ei + ej − ε ≥ 0. Furthermore,
since only j is shocked, I equivalently get

∑
i ei ≥ ε. This is a contradiction.
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2. In the presence of a large shock to bank j, all other banks default if and only if xi < yi for
all i, where xi’s are the solutions of the following equations:

xi = ei +
∑
k ̸=j

qi,k · xk.

Comparing it to equation (6), it is clear that xi = hi,j . All banks default if and only if
hi,j < yi.

Proof of Proposition 3. The proof is identical to that of Proposition 1 by interchanging Y with
E.
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B Additional figures and tables
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Figure 13: Time evolution of sum of interbank liabilities and harmonic distances of Bank 2 (O-SII)
in Hungary
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Figure 14: Time evolution of sum of interbank liabilities and harmonic distances of Bank 3 (O-SII)
in Hungary
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harmonic distances:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.588 0.094 0.589 0.092 0.647 0.081
0.2 0.653 0.081 0.654 0.079 0.661 0.083
0.4 0.750 0.071 0.744 0.071 0.750 0.074
0.6 0.809 0.066 0.811 0.068 0.809 0.068

extended harmonic distances:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.592 0.094 0.592 0.092 0.594 0.096
0.2 0.655 0.080 0.656 0.079 0.649 0.080
0.4 0.751 0.071 0.746 0.071 0.751 0.073
0.6 0.810 0.066 0.812 0.068 0.810 0.068

weighted degree:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.864 0.040 0.867 0.037 0.867 0.039
0.2 0.885 0.037 0.886 0.037 0.885 0.037
0.4 0.925 0.031 0.917 0.032 0.920 0.030
0.6 0.940 0.028 0.941 0.028 0.940 0.029

eigenvector:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.825 0.050 0.823 0.048 0.826 0.050
0.2 0.851 0.046 0.852 0.046 0.850 0.047
0.4 0.895 0.039 0.892 0.040 0.896 0.039
0.6 0.923 0.033 0.924 0.035 0.922 0.036

Bonacich:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.575 0.098 0.576 0.095 0.576 0.105
0.2 0.645 0.083 0.645 0.081 0.636 0.094
0.4 0.743 0.072 0.739 0.072 0.744 0.075
0.6 0.744 0.075 0.801 0.066 0.799 0.066

concentration:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.588 0.111 0.588 0.109 0.589 0.114
0.2 0.653 0.092 0.653 0.093 0.643 0.098
0.4 0.713 0.082 0.712 0.085 0.710 0.083
0.6 0.710 0.083 0.724 0.092 0.725 0.089

...
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closeness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.827 0.045 0.825 0.047 0.824 0.045
0.2 0.845 0.042 0.843 0.055 0.845 0.042
0.4 0.867 0.052 0.864 0.060 0.862 0.055
0.6 0.860 0.096 0.856 0.100 0.858 0.091

betweenness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.827 0.045 0.825 0.047 0.824 0.045
0.2 0.845 0.042 0.843 0.055 0.845 0.042
0.4 0.867 0.052 0.864 0.060 0.862 0.055
0.6 0.860 0.096 0.856 0.100 0.858 0.091

Table 10: Rank correlations corresponding to Table 1

harmonic distances
α avg.corr. std.dev.

0.1 0.588 0.093
0.2 0.654 0.080
0.4 0.747 0.073
0.6 0.811 0.066

extended harmonic distances
α avg.corr. std.dev.

0.1 0.591 0.093
0.2 0.656 0.080
0.4 0.748 0.073
0.6 0.812 0.066

weighted degree
α avg.corr. std.dev.

0.1 0.867 0.039
0.2 0.887 0.036
0.4 0.919 0.032
0.6 0.941 0.027

eigenvector
α avg.corr. std.dev.

0.1 0.823 0.050
0.2 0.852 0.046
0.4 0.894 0.041
0.6 0.924 0.034

Bonacich
α avg.corr. std.dev.

0.1 0.575 0.099
0.2 0.645 0.088
0.4 0.741 0.075
0.6 0.802 0.066

concentration
α avg.corr. std.dev.

0.1 0.587 0.111
0.2 0.649 0.097
0.4 0.711 0.084
0.6 0.728 0.088

closeness
α avg.corr. std.dev.

0.1 0.825 0.046
0.2 0.845 0.044
0.4 0.864 0.057
0.6 0.861 0.089

betweenness
α avg.corr. std.dev.

0.1 0.738 0.066
0.2 0.770 0.059
0.4 0.778 0.078
0.6 0.801 0.086

Table 11: Rank correlations corresponding to Table 2.
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